欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    复旦量子力学讲义qmapter1.ppt

    • 资源ID:4752798       资源大小:3.88MB        全文页数:138页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复旦量子力学讲义qmapter1.ppt

    Quantum Mechenics II,Ru-Keng Su2005.1.5,Chapter 1Foundation of Quantum Mechanics,1.1 State vector,wave function and superposition of states,This chapter evolves from an attempt of a brief review over the basic ideas and formulae in undergraduate-level quantum mechanics.The details of this chapter can be found in the usual references of quantum mechanics,1.1 State vector,wave function and superposition of states,1.1 State vector,wave function and superposition of states,1.1 State vector,wave function and superposition of states,1.2 Schrdinger equation and its solutions,1.2 Schrdinger equation and its solutions,1.2 Schrdinger equation and its solutions,1D Schrdinger equationInfinite potential well,1.2 Schrdinger equation and its solutions,Infinite potential well,1.2 Schrdinger equation and its solutions,Harmonic oscillator,1.2 Schrdinger equation and its solutions,Harmonic oscillator,1.2 Schrdinger equation and its solutions,Harmonic oscillator,1.2 Schrdinger equation and its solutions,Harmonic oscillator,1.2 Schrdinger equation and its solutions,Harmonic oscillator,1.2 Schrdinger equation and its solutions,3D Schrodinger equationCentral potential,1.2 Schrdinger equation and its solutions,Central potential,1.2 Schrdinger equation and its solutions,Coulomb potential,1.2 Schrdinger equation and its solutions,Coulomb potential,1.3 Operators,According to the Born statistical interpretation,The probability of finding a particle at position r is just the square of its wave function,1.3 Operators,1.3 Operators,1.3 Operators,1.3 Operators,pi-ih/2iCartesian rectangular coordinates1st convention:pure coordinate part pure momentum part2nd convention:mixed part,1.3 Operators,1.3 Operators,Commutator,1.3 Operators,Commutator,1.3 Operators,Commutator,1.3 Operators,Hermitian operator,1.3 Operators,Eigenequation,1.3 Operators,O-representation,1.3 Operators,O-representation,1.4 Approximation method,Perturbation independent of timeNon-degenerate,1.4 Approximation method,Non-degenerate,1.4 Approximation method,Non-degenerate,1.4 Approximation method,Degenerate,1.4 Approximation method,Degenerate,1.4 Approximation method,Advantages of this choice are,1.4 Approximation method,Degeneracy may be removed,1.4 Approximation method,Perturbation depending on timeKey:How to calculate the transition amplitude,1.4 Approximation method,Perturbation depending on time,1.4 Approximation method,Perturbation depending on time,1.4 Approximation method,Variational methodKey:How to choose the trial wave function,1.4 Approximation method,Variational method,1.5 WKB method(Wentzel-Kramers-Brillouin),Basic idea:(Q.M.)(C.M)when h0WKB Semi-Classical method:To find an expansion of h and solve stationary Schrdinger equation,1.5 WKB method(Wentzel-Kramers-Brillouin),1.5 WKB method(Wentzel-Kramers-Brillouin),1.5 WKB method(Wentzel-Kramers-Brillouin),For 1D case,1.5 WKB method(Wentzel-Kramers-Brillouin),For 1D case,1.5 WKB method(Wentzel-Kramers-Brillouin),For 1D case,1.5 WKB method(Wentzel-Kramers-Brillouin),Three regions:E U(x),1.5 WKB method(Wentzel-Kramers-Brillouin),Conservation of the probability,1.5 WKB method(Wentzel-Kramers-Brillouin),E=U(x)Turning points:The semi-classical approximation is not applicable,1.5 WKB method(Wentzel-Kramers-Brillouin),E=U(x),1.5 WKB method(Wentzel-Kramers-Brillouin),E=U(x),1.5 WKB method(Wentzel-Kramers-Brillouin),E U(x),1.5 WKB method(Wentzel-Kramers-Brillouin),Example I:,1.5 WKB method(Wentzel-Kramers-Brillouin),E U(x),1.5 WKB method(Wentzel-Kramers-Brillouin),E U(x),1.5 WKB method(Wentzel-Kramers-Brillouin),E U(x),1.5 WKB method(Wentzel-Kramers-Brillouin),a1,b1 region,1.5 WKB method(Wentzel-Kramers-Brillouin),E U(x),Asymptotic solutions,1.5 WKB method(Wentzel-Kramers-Brillouin),1.5 WKB method(Wentzel-Kramers-Brillouin),1.5 WKB method(Wentzel-Kramers-Brillouin),b2,a2 region,1.5 WKB method(Wentzel-Kramers-Brillouin),This is the Bohr-Sommerfeld quantized condition,1.5 WKB method(Wentzel-Kramers-Brillouin),Example 2:Barrier penetration,1.5 WKB method(Wentzel-Kramers-Brillouin),Barrier penetration,1.5 WKB method(Wentzel-Kramers-Brillouin),Barrier penetration,1.5 WKB method(Wentzel-Kramers-Brillouin),Barrier penetration,1.5 WKB method(Wentzel-Kramers-Brillouin),Barrier penetration,1.5 WKB method(Wentzel-Kramers-Brillouin),Connection formulae(dU/dx0),1.5 WKB method(Wentzel-Kramers-Brillouin),Connection formulae(dU/dx0),1.6 Density matrix,Problem:Can we get a new formula to calculate the expectation value like quantum statisticsQ.M.=Q.S.=tr(A)=tr(exp(-H)A),1.6 Density matrix,Key:What is density matrix,1.6 Density matrix,Example:Two level system,1.6 Density matrix,Example:Two level system,1.6 Density matrix,Properties of density matrixHermitian matrix,1.6 Density matrix,Properties of density matrix,1.6 Density matrix,Properties of density matrix,1.6 Density matrix,Properties of density matrixThe eigenvalue of density matrix are 0 or 1,1.6 Density matrix,Properties of density matrixTensor Product,1.6 Density matrix,Properties of density matrix,1.6 Density matrix,Properties of density matrix,1.6 Density matrix,Properties of density matrixEvolution equation of density matrix,1.6 Density matrix,Properties of density matrixVector p is a polarization vector of the state which points in direction,1.6 Density matrix,Properties of density matrix,1.7 Coherent States,Consider a forced linear Harmonic oscillator,1.7 Coherent States,1.7 Coherent States,The last equation can be solved by Greens functions,1.7 Coherent States,1.7 Coherent States,where ain is the solution of the corresponding homogeneous equation when tt2Suppose f(t)0 when t1tt2,1.7 Coherent States,1.7 Coherent States,ain aout via a unitary transformationsTo find S:Noting,1.7 Coherent States,1.7 Coherent States,Our problem is:how to find the probability amplitude from|nin(forced)|inout,in particular,to find outin,1.7 Coherent States,1.7 Coherent States,1.7 Coherent States,S|0 is the coherent states,1.7 Coherent States,1.7 Coherent States,1.7 Coherent States,Properties of coherent statesCoherent states is the eigenstate of operator a,1.7 Coherent States,Properties of coherent statesCoherent states is the eigenstate of operator a,1.7 Coherent States,Normalization,but do not orthogonal,1.7 Coherent States,Normalization,but do not orthogonal,1.7 Coherent States,Overcomplete set,1.7 Coherent States,Overcomplete set,1.7 Coherent States,Overcomplete set,1.7 Coherent States,Coherent state is the state which satisfies the minimum uncertainty principle,1.7 Coherent States,1.7 Coherent States,1.7 Coherent States,1.7 Coherent States,1.8 Schrdinger picture,Heisenberg picture and interaction picture,Schrdinger picture(Lab coordinates),1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,uns(x)does not depend on tOs does not depend on ts depends on t,1.8 Schrdinger picture,Heisenberg picture and interaction picture,Heisenberg picture(co-moving coordinates),1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,unH(x,t)depend on tOH(t)depend on tH does not depend on t,1.8 Schrdinger picture,Heisenberg picture and interaction picture,Discussion:,1.8 Schrdinger picture,Heisenberg picture and interaction picture,=,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,For energy representation,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,Interactional pictureTo futher study perturbation,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,To find the evolution operator,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,1.8 Schrdinger picture,Heisenberg picture and interaction picture,

    注意事项

    本文(复旦量子力学讲义qmapter1.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开