平方根、立方根(1).doc
平方根、立方根(1)第一课时 平方根冷集镇中心学校 马红星 学习目标:1.了解平方根的概念,会用根号表示数的平方根.2.了解开平方与平方互为逆运算,会用平方根的概念求某些非负数的平方根.学习重点:了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根.学习难点:平方根的意义。一、学前准备【旧知回顾】1填表:111213141516171819202填空:(3)2= ;()2= ; 。总结:任意有理数的平方是 数即 0 。 。3.我们知道:4的平方是16, 的平方也是16,所以 的平方是16类似的: 的平方是25; 的平方是; 的平方是1 ;【新知预习】1、平方根的定义:一般的, ,也叫做 。记作: 2、平方根的性质:(1)正数有 个平方根,且它们互为 。(2)0的平方根是 。(3)负数 。3、想一想,填一填:(1)表示 (2)-25的平方根 ,理由是 。(3)因为22=_,(-2)2=_,所以2和-2都是_的平方根二、探究活动【初步感悟】 因为= , = ,所以 ±5是 的平方根 . 平方得81的数是 ,因此81的平方根是 . 9的平方根是 ;的正的平方根是 ;1.44的负的平方根是 归纳定义: 【讨论提高】 3有 个平方根,它们互为 数,记作 . 0有 个平方根,0的平方根是 -4、-8、-36有平方根吗?为什么? 总结:一个数的平方根有几个?(平方根的性质) 应用:1.如果 a 的一个平方根是 4,则它的另一个平方根是 .2.若 平方根是 ±5 ,则a= ;若 平方根是 0 ,则a= ;新若 没有平方根,那么 a 3.明辨是非:下列叙述正确的打“” ,错误的打“×”:4是16的平方根; ( ) 16的平方根是-4; ( ) 的平方根是3. ( ) 1的平方根是1; ( ) 9的平方根是3; ( ) 只有一个平方根的数是0;( )【例题研讨】例1.求下列各数的平方根:(1)0.25; (2); (3)15; (4) (5)例2.求下列各式中的x的值; ; 25=0例3.下列各数有平方根吗?若有,求出它们的平方根;若没有,请说明理由.(1) ; (2) ; (3) ; (4).【课题自测】1.121的平方根是的数学表达式是( )A. B. C. D.2.下列说法中正确的是( )A.的平方根是 B.把一个数先平方再开平方得原数C.没有平方根 D.正数的平方根是3.能使有平方根的是( )A. B. C. D. 4.一个数如果有两个平方根,那么这两个平方根之和是( )A.大于0 B.等于0 C.小于0 D.大于或等于05.289的平方根是 ,的平方根是 ,三、自我测试新1.如果一个数的平方根等于它本身,那么这个数是 .2.9是数a的一个平方根,那么数a的另一个平方根是 ,数a是 .3如果一个数的平方根是与,那么这个数是 4. = , = , ,5、求下列各数的平方根(1) (2) (3)15 (4)6.求下列各式中的x.(1); ; (3) 四、应用与拓展1.已知 5x1的平方根是 ±3 ,4x2y1的平方根是 ±1,求4x2y的平方根2.若b是a的平方根,则下列各式中正确的是( )A. B. C. D.3.若,则 ;若,则 .4的意义是 5.若正数a的两个平方根的积为,则a= 五、教学反思: