欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    26[1]二次函数全章导学案(新人教版).doc

    • 资源ID:4718323       资源大小:836.50KB        全文页数:29页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    26[1]二次函数全章导学案(新人教版).doc

    26.1二次函数(1)学习目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重参与,联系实际,丰富同学们的感性认识,培养同学们的良好的学习习惯。教学过程:一、试一试 1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2试将计算结果填写在下表的空格中,AB长x(m)123456789BC长(m) 12面积y(m2)48 2x的值是否可以任意取?有限定范围吗? 3我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式, 二、提出问题 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 为了解决这个问题,我们可先思考并回答下列问题:1商品的利润与售价、进价以及销售量之间有什么关系? _2如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?_ 3若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? _ 4x的值是否可以任意取?如果不能任意取,请求出它的范围, _ 5若设该商品每天的利润为y元,求y与x的函数关系式。 _ 三、观察;概括 1.观察函数关系式(1)和(2),思考并回答问题; (1)函数关系式(1)和(2)的自变量各有几个? _ (2)多项式2x220和100x2100x200分别是几次多项式?_ (3)函数关系式(1)和(2)有什么共同特点?_ (4)本章导图中的问题以及P1页的问题2有什么共同特点? 请同学讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2二次函数定义:形如y=ax2bxc (a、b、c是常数,a0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项四、课堂练习1下列函数中,哪些是二次函数?(1)(2)(3) (4)2当k为何值时,函数为二次函数?3已知正方形的面积为,周长为x(cm)(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数26.1二次函数(2)学习目标: 1、学会用描点法画出y=ax2的图象,理解抛物线的有关概念。2、经历、探索二次函数y=ax2图象性质的过程,培养观察、思考、归纳的良好思维习惯教学过程:一、提出问题 1,我们可以回想一下,一次函数的性质是如何研究的? 2我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么? 3一次函数的图象是什么?二次函数的图象是什么?二、范例 例1、画二次函数y=x2的图象。解:(1)列表:在x的取值范围内列出函数对应值表:x3210123y0 (2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点 (3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。提问:观察这个函数的图象,它有什么特点?观察,思考、讨论、交流,归结为:_抛物线概念:像这样的曲线通常叫做_。顶点概念:抛物线与它的对称轴的交点叫做抛物线的_三、做一做 1在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别? 2在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么? 3将所画的四个函数的图象作比较,你又能发现什么? 四、归纳、概括 函数yx2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数yx2、y=-x2、y2x2、y=-2x2的图象的共同特点,可猜想: 函数y=ax2的图象是一条_,它关于_对称,它的顶点坐标是_。 如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么? 请同学们观察yx2、y2x2的图象,填空; 当a>0时,抛物线y=ax2开口_,在对称轴的左边,曲线自左向右_;在对称轴的右边,曲线自左向右_,_是抛物线上位置最低的点。 图象的这些特点反映了函数的什么性质?先请同学们观察下图,回答以下问题; (1)XA、XB大小关系如何?是否都小于0? (2)yA、yB大小关系如何? (3)XC、XD大小关系如何?是否都大于0? (4)yC、yD大小关系如何? (XA<XB,且XA<0,XB<0;yA>yB;XC<XD,且XC>0,XD>0,yC<yD) 其次,请同学们填空。 当X<0时,函数值y随着x的增大而_,当X>O时,函数值y随X的增大而_;当X_时,函数值y=ax2 (a>0)取得最小值,最小值y=_ 以上结论就是当a>0时,函数y=ax2的性质。 思考以下问题: 观察函数y-x2、y=-2x2的图象,试作出类似的概括,当a<O时,抛物线yax2有些什么特点?它反映了当a<O时,函数y=ax2具有哪些性质? 五、课堂练习1在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标(1) (2) (3)2(1)函数的开口 ,对称轴是 ,顶点坐标是 ;(2)函数的开口 ,对称轴是 ,顶点坐标是 3已知等边三角形的边长为2x,请将此三角形的面积S表示成x的函数,并画出图象的草图26.1 二次函数(3)学习目标: 1、同学们能利用描点法正确作出函数yax2b的图象。2、同学们经历二次函数yax2bxc性质探究的过程,理解二次函数yax2b的性质及它与函数yax2的关系。教学过程:一、提出问题1二次函数y2x2的图象是_,它的开口向_,顶点坐标是_;对称轴是_,在对称轴的左侧,y随x的增大而_,在对称轴的右侧,y随x的增大而_,函数yax2与x_时,取最_值,其最_值是_。2二次函数y2x21的图象与二次函数y2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究? 问题2:你能在同一直角坐标系中,画出函数y2x2与y2x21的图象吗?问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系? 问题4:函数y2x21和y2x2的图象有什么联系? 问题5:现在你能回答前面提出的第2个问题了吗? 问题6:你能由函数y2x2的性质,得到函数y2x21的一些性质吗?当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大,当x_时,函数取得最_值,最_值y_这就是函数y2x21的性质。三、做一做问题7:先在同一直角坐标系中画出函数y2x22与函数y2x2的图象,再作比较,说说它们有什么联系和区别?(模仿前面问题的解决方法) 问题8:你能说出函数y2x22的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗? 问题9:在同一直角坐标系中。函数yx22图象与函数yx2的图象有什么关系?问题10:你能说出函数yx22的图象的开口方向、对称轴和顶点坐标吗? 四、练习: 1分别在同一直角坐标系中,画出下列各组两个二次函数的图象。 (1)y2x2与y2x22; (2)y3x21与y3x21。 2.在同一直角坐标系内画出下列二次函数的图象, yx2,yx22,yx22 26.1二次函数(4)学习目标: 1同学们能利用描点法画出二次函数ya(xh)2的图象。 2同学们经历二次函数ya(xh)2性质探究的过程,理解函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系。教学过程:一、提出问题1在同一直角坐标系内,画出二次函数yx2,yx21的图象,并回答: (1)两条抛物线的位置关系。 (2)分别说出它们的对称轴、开口方向和顶点坐标。 (3)说出它们所具有的公共性质。 2二次函数y2(x1)2的图象与二次函数y2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、分析问题,解决问题问题1:你将用什么方法来研究上面提出的问题?问题2:你能在同一直角坐标系中,画出二次函数y2x2与y2(x1)2的图象吗? 问题3:现在你能回答前面提出的问题吗?问题4:你可以由函数y2x2的性质,得到函数y2(x1)2的性质吗?请同学们完成以下填空: 当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大;当x_时,函数取得最_值y_。三、做一做问题5:你能在同一直角坐标系中画出函数y2(x1)2与函数y2x2的图象,并比较它们的联系和区别吗? 问题6;你能由函数y2x2的性质,得到函数y2(x1)2的性质吗? 问题7:在同一直角坐标系中,函数y(x2)2图象与函数yx2的图象有何关系?问题8:你能说出函数y(x2)2图象的开口方向、对称轴和顶点坐标吗?问题9:你能得到函数y(x2)2的性质吗? 四、 课堂练习: 1在同一直角坐标系中,画出下列各组两个二次函数的图象。 (1)y4x2与y4(x3)2 (2)y(x1)2与y(x1)2 2已知函数yx2,y(x2)2和y(x2)2。 (1)在同一直角坐标中画出它们的函数图象; (2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)试说明,分别通过怎样的平移,可以由函数y1/4x2的图象得到函数y(x2)2和函数y(x2)2的图象? (4)分别说出各个函数的性质。 3二次函数ya(xh)2的最大值或最小值与二次函数图象的顶点有什么关系?第_周 星期_第_节 本学期学案累计: 课时 上课时间:_ 签名:_26.1二次函数(5)学习目标: 1同学们理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系。2会确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标。3同学们经历函数y=a(xh)2k性质的探索过程,理解函数y=a(xh)2k的性质。教学过程:一、提出问题1函数y=2x21的图象与函数y=2x2的图象有什么关系?2函数y=2(x1)2的图象与函数y=2x2的图象有什么关系?3函数y=2(x1)21图象与函数y=2(x1)2图象有什么关系?函数y=2(x1)21有哪些性质?二、试一试你能填写下表吗?y=2x2 向右平移的图象1个单位y=2(x1)2向上平移1个单位y=2(x1)21的图象开口方向向上对称轴y轴顶 点(0,0)问题2:从上表中,你能分别找到函数y=2(x1)21与函数y=2(x1)2、y=2x2图象的关系吗?问题3:你能发现函数y=2(x1)21有哪些性质? 三、做一做问题4:在图2623中,你能再画出函数y=2(x1)22的图象,并将它与函数y=2(x1)2的图象作比较吗? 问题5:你能说出函数y=(x1)22的图象与函数y=x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗? 四、课堂练习: 1巳知函数yx2、yx21和y(x1)21(1)在同一直角坐标系中画出三个函数的图象; (2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明:分别通过怎样的平移,可以由抛物线yx2得到抛物线yx21和抛物线y(x1)21;(4)试讨论函数y(x1)21的性质。2已知函数y6x2、y6(x3)23和y6(x3)23。(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明,分别通过怎样的平移,可以由抛物线y6x2得到抛物线y6(x3)23和抛物线y6(x3)23;(4)试讨沦函数y6(x3)23的性质;3不画图象,直接说出函数y2x25x7的图象的开口方向、对称轴和顶点坐标。4函数y2(x1)2k的图象与函数y2x2的图象有什么关系?26.1二次函数(6)学习目标: 1同学们掌握用描点法画出函数yax2bxc的图象。2同学们掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。3同学们经历探索二次函数yax2bxc的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数yax2bxc的性质。教学过程:一、提出问题、解决问题 1你能说出函数y4(x2)21图象的开口方向、对称轴和顶点坐标吗? 2函数y4(x2)21图象与函数y4x2的图象有什么关系? 3函数y4(x2)21具有哪些性质? 4不画出图象,你能直接说出函数yx2x的图象的开口方向、对称轴和顶点坐标吗? 5你能画出函数yx2x的图象,并说明这个函数具有哪些性质吗?二、做一做 1请你按照上面的方法,画出函数yx24x10的图象,由图象你能发现这个函数具有哪些性质吗? 2通过配方变形,说出函数y2x28x8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少? 以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数yax2bxc(a0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗? 同学们讨论,全班交流,达成共识;yax2bxca(x2x)c ax2x()2()2c ax2x()2c a(x)2 当a0时,开口向上,当a0时,开口向下。 对称轴是xb/2a,顶点坐标是(,)四、课堂练习:1填空:(1)抛物线yx22x2的顶点坐标是_;(2)抛物线y2x22x的开口_,对称轴是_;(3)抛物线y2x24x8的开口_,顶点坐标是_;(4)抛物线yx22x4的对称轴是_;(5)二次函数yax24xa的最大值是3,则a_2画出函数y2x23x的图象,说明这个函数具有哪些性质。3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y3x22x; (2)yx22x (3)y2x28x8 (4)yx24x34求二次函数ymx22mx3(m0)的图象的对称轴,并说出该函数具有哪些性质?26.1二次函数(7)学习目标: 1能根据实际问题列出函数关系式、 2使同学们能根据问题的实际情况,确定函数自变量x的取值范围。 3通过建立二次函数的数学模型解决实际问题,培养同学们分析问题、解决问题的能力,提高同学们用数学的意识。教学过程:一、复习旧知1通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。 (1)y6x212x; (2)y4x28x10 2. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少? 二、范例 有了前面所学的知识,现在就可以应用二次函数的知识去解决第2页提出的两个实际问题; 例1、要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大? 解:设矩形的宽AB为xm,则矩形的长BC为(202x)m,由于x0,且202xO,所以Ox1O。 围成的花圃面积y与x的函数关系式是 yx(202x) 即y2x220x 配方得y2(x5)250 所以当x5时,函数取得最大值,最大值y50。 因为x5时,满足Ox1O,这时202x10。所以应围成宽5m,长10m的矩形,才能使围成的花圃的面积最大。模仿例1的解法解答下例 例2某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。将这种商品的售价降低多少时,能使销售利润最大?解题小结:同学们回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式; (2)研究自变量的取值范围; (3)研究所得的函数; (4)检验x的取值是否在自变量的取值范围内,并求相关的值: (5)解决提出的实际问题。 小结:请同学们回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式; (2)研究自变量的取值范围; (3)研究所得的函数; (4)检验x的取值是否在自变量的取值范围内,并求相关的值: (5)解决提出的实际问题。三、课堂练习 1填空:(1)二次函数yx22x5取最小值时,自变量x的值是_;(2)已知二次函数yx26xm的最小值为1,那么m的值是_。2.求下列函数的最大值或最小值。 (1)yx24x2 (2)yx25x (3)y5x210 (4)y2x28x3.已知一个矩形的周长是24cm。(1)写出矩形面积S与一边长a的函数关系式。(2)当a长多少时,S最大?4如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为xm。(1)要使鸡场的面积最大,鸡场的长应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?(3)比较(1)、(2)的结果,你能得到什么结论?26.2用函数的观点看一元二次方程(1)学习目标: 1通过探索,同学们理解二次函数与一元二次方程、一元二次不等式之间的联系。 2同学们能够运用二次函数及其图象、性质解决实际问题,提高用数学的意识。 3进一步培养同学们综合解题能力,渗透数形结合思想。教学过程:一、引言 在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,请同学们共同研究,尝试解决以下几个问题。二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0.8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是yx22x。(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB1.6m时,涵洞顶点与水面的距离为2.4m。这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?问题3:画出函数yx2x0.75的图象,根据图象回答下列问题。(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y0?这里x的取值与方程x2x0有什么关系?(3)你能从中得到什么启发?三、试一试 根据问题3的图象回答下列问题。 (1)当x取何值时,y0?当x取何值时,y0? (2)能否用含有x的不等式来描述(1)中的问题? 想一想:二次函数与一元二次不等式有什么关系? 请同学们类比二次函数与一元二次不等式方程的关系,讨论、交流,达成共识: (1)从“形”的方面看,二次函数yax2bJc在x轴上方的图象上的点的横坐标,即为一元二次不等式ax2bxc0的解;在x轴下方的图象上的点的横坐标即为一元二次不等式ax2bxc0的解。 (2)从“数”的方面看,当二次函数yax2bxc的函数值大于0时,相应的自变量的值即为一元二次不等式ax2bxc0的解;当二次函数yax2bxc的函数值小于0时,相应的自变量的值即为一元二次不等式ax2bcc0的解。这一结论反映了二次函数与一元二次不等式的关系。四、课堂练习: 1. 二次函数yx23x18的图象与x轴有两交点,求两交点间的距离。2如图(7),一位篮球运动员跳起投篮,球沿抛物线yx23.5运行,然后准确落人篮框内。已知篮框的中心离地面的距离为3.05米。 (1)球在空中运行的最大高度为多少米? (2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?26.2用函数的观点看一元二次方程(2)学习目标: 1复习巩固用函数yax2bxc的图象求方程ax2bxc0的解。 2请同学们体验函数yx2和ybxc的交点的横坐标是方程x2bxc的解的探索过程,掌握用函数yx2和ybxc图象交点的方法求方程ax2bxc的解。 3提高同学们综合解题能力,渗透数形结合思想。教学过程:一、复习巩固画出函数y2x23x2的图象,求方程2x23x20的解。 二、探索问题 问题1:(P23问题4)育才中学初三(3)班同学们在上节课的作业中出现了争论:求方程x2x十3的解时,几乎所有同学们都是将方程化为x2x30,画出函数yx2x3的图象,观察它与x轴的交点,得出方程的解。唯独小刘没有将方程移项,而是分别画出了函数yx2和yx2的图象,如图(3)所示,认为它们的交点A、B的横坐标和2就是原方程的解提问:1.这两种解法的结果一样吗? 2小刘解法的理由是什么?请同学们讨论,交流,发表不同意见,并进行归纳。3 函数yx2和ybxc的图象一定相交于两点吗?你能否举出例子加以说明?4 函数yx2和ybxc的图象的交点横坐标一定是一元二次方程x2bxc的解吗?5如果函数yx2和ybxc图象没有交点,一元二次方程x2bxc的解怎样?三、做一做运用小刘方法求下列方程的解,并检验小刘的方法是否合理。2x23x20。四、随堂练习1填空。 (1)抛物线yx2x2与x轴的交点坐标是_,与y轴的交点坐标是_。 (2)抛物线y2x25x3与y轴的交点坐标是_,与x轴的交点坐标是_。2.已知抛物线y12x28xk8和直线y2mx1相交于点P(3,4m)。 (1)求这两个函数的关系式; (2)当x取何值时,抛物线与直线相交,并求交点坐标。 3已知抛物线y1x2xk与直线y2x1的交点的纵坐标为3。 (1)求抛物线的关系式;(2)求抛物线yx2xk与直线y2x1的另一个交点坐标4已知抛物线yax2bxc与直线yx2相交于(m,2),(n,3)两点,且抛物线的对称轴为直线x3,求函数的关系式。26.3实际问题与二次函数(1)学习目标: 1同学们掌握用待定系数法由已知图象上一个点的坐标求二次函数yax2的关系式。 2. 同学们掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。 3同学们体验二次函数的函数关系式的应用,提高同学们用数学意识。教学过程:一、创设问题情境 如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。 如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: yax2 (a0) (1) 因为y轴垂直平分AB,并交AB于点C,所以CB 2(cm),又CO0.8m,所以点B的坐标为(2,0.8)。 因为点B在抛物线上,将它的坐标代人(1),得 0.8a×22 所以a0.2 因此,所求函数关系式是y0.2x2。 二、引申拓展问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系? 问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗? 问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同? 问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么? 三、课堂练习: 1. 一条抛物线yax2bxc经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。2. 二次函数的图象的顶点在原点,且过点(2,4),求这个二次函数的关系式。3若二次函数的图象经过A(0,0),B(1,11),C(1,9)三点,求这个二次函数的解析式。4 如果抛物线yax2Bxc经过点(1,12),(0,5)和(2,3),;求abc的值。5.已知二次函数yax2bxc的图象如图所示,求这个二次函数的关系式; 6二次函数yax2bxc与x轴的两交点的横坐标是,与x轴交点的纵坐标是5,求这个二次函数的关系式。26.3实际问题与二次函数(2)学习目标: 1复习巩固用待定系数法由已知图象上三个点的坐标求二次函数的关系式。2掌握已知抛物线的顶点坐标或对称轴等条件求出函数的关系式。一、复习巩固 1如何用待定系数法求已知三点坐标的二次函数关系式? 2已知二次函数的图象经过A(0,1),B(1,3),C(1,1)。 (1)求二次函数的关系式,(2)画出二次函数的图象; (3)说出它的顶点坐标和对称轴。 3二次函数yax2bxc的对称轴,顶点坐标各是什么? 二、范例 例1已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。 例2已知抛物线对称轴是直线x2,且经过(3,1)和(0,5)两点,求二次函数的关系式。 例3。已知抛物线的顶点是(2,4),它与y轴的一个交点的纵坐标为4,求函数的关系式。 三、课堂练习1已知二次函数yax2bxc的图象经过A(0,1),B(1,0),C(1,0),那么此函数的关系式是_。如果y随x的增大而减少,那么自变量x的变化范围是_。2. 已知二次函数当x3时,有最大值1,且当x0时,y3,求二次函数的关系式。3若抛物线yx2bxc的最高点为(1,3),求b和c。 4. 已知抛物线的顶点坐标为(1,3),与y轴交点为(0,5),求二次函数的关系式。 5已知二次函数yax2bxc的图象过A(0,5),B(5,0)两点,它的对称轴为直线x2,求这个二次函数的关系式。 第26章二次函数小结与复习(1)学习目标: 理解二次函数的概念,掌握二次函数yax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线yax2经过适当平移得到ya(xh)2k的图象。教学过程:一、结合例题精析,强化练习,剖析知识点1二次函数的概念,二次函数yax2 (a0)的图象性质。例:已知函数是关于x的二次函数。求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小? 强化练习;已知函数是二次函数,其图象开口方向向下,则m_,顶点为_,当x_0时,y随x的增大而增大,当x_0时,y随x的增大而减小。2. 用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律.例:用配方法求出抛物线y3x26x8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y3x2。 强化练习:(1)抛物线yx2bxc的图象向左平移2个单位。再向上平移3个单位,得抛物线yx22x1,求:b与c的值。(2)通过配方,求抛物线yx24x5的开口方向、对称轴及顶点坐标,再画出图象。 3知识点串联,综合应用。 例:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线yax2相交于B、C两点,已知B点坐标为(1,1)。 (1)求直线和抛物线的解析式; (2)如果D为抛物线上一点,使得AOD与OBC的面积相等,求D点坐标。 强化练习:函数yax2(a0)与直线y2x3交于点A(1,b),求:(1)a和b的值;(2)求抛物线yax2的顶点和对称轴;(3)x取何值时,二次函数yax2中的y随x的增大而增大,(4)求抛物线与直线y

    注意事项

    本文(26[1]二次函数全章导学案(新人教版).doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开