《消元—解二元一次方程组》第1课时课件.ppt
“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程问题,因此,一旦解决了方程问题,一切问题将迎刃而解!”法国数学家 笛卡儿Descartes,1596-1650,名人语录,8.2 消元解二元一次方程组,第1课时,学校准备建设一个周长为60米的长方形游泳池,要求游泳池的长是宽的2倍,为了帮建筑工人计算出长和宽各是多少米?请你列出相应的方程组。,解:设游泳池的宽为x米,长为y米,则,2x+2y=60,y=2x,问题情境,想一想如何求解?,2x+4x=60,上面的解方程组的基本思路是什么?基本步骤有哪些?,上面解方程组的基本思路是把“二元”转化为“一元”“消元”,主要步骤是:将含一个未知数表示另一个未知数的代数式,代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。这种解方程组的方法称为代入消元法,简称代入法。,归纳,将未知数的个数由多化少,逐一解决的想法,叫做消元思想。,解:,把代入得:,2y 3(y 1)=1,2y 3y+3=1,2y 3y=1-3,-y=-2,y=2,把y=2代入,得,x=y 1=2 1=1,2 y 3 x=1,x=y-1,(y-1),谈谈思路:,谈谈思路:,解:,把代入得:,2y 3(y 1)=1,2y 3y+3=1,2y 3y=1-3,-y=-2,y=2,把y=2代入,得,x=y 1=2 1=1,例2 解方程组,解:,由得:,x=3+y,把代入得:,3(3+y)8y=14,把y=1代入,得,x=2,1、将方程组里的一个方程变形,用含有一个未知数的式子表示另一个未知数;,2、用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;,3、把这个未知数的值代入上面的式子,求得另一个未知数的值;,4、写出方程组的解。,变,代,求,写,9+3y 8y=14,5y=5,y=1,说说方法:,1、二元一次方程组,这节课我们学习了什么知识?,代入消元法,一元一次方程,2、代入消元法的一般步骤:,3、思想方法:转化思想、消元思想、方程(组)思想.,变,代,求,写,1,转化,解二元一次方程组,(1),(2),(3),(4),1、用代入法解二元一次方程组,(1),(2),2.已知 是二元一次方程组 的解,则 a=,b=。,3.已知(a+2b-5)2+|4a+b-6|=0,求a和b的值.,3,1,4、已知钢笔每只5元,圆珠笔每只2元,小明用16元钱买了这两种笔共5支,试求小明买钢笔和圆珠笔各多少支?,解:设小明买钢笔x支,买圆珠笔y支,根据题意列出方程组得,x+y=55x+2y=16,解得:,x=2y=3,答:小明买钢笔2支,买圆珠笔3支.,5、如图所示,将长方形的一个角折叠,折痕为,BAD比BAE大48.设BAE和BAD的度数分别为x,y度,那么x,y所适合的一个方程组是(),A,B,C,D,C,探索与实践,小组竞赛,设甲数为x,乙数为y,根据下列语句,列二元一次方程.(1)甲数的3倍比乙数大5;(2)甲数比乙数的2倍少2;(3)甲数的2倍与乙数的3倍的和是20;(4)甲乙两数之差为2.,3x-y=5,x=2y-2,2x+3y=20,x-y=2,探索与实践,(1)甲数的3倍比乙数大5;,(2)甲数比乙数的2倍少2;,(3)甲数的2倍与乙数的3倍的和是20;,(4)甲乙两数之差为2.,x-y=2,2x+3y=20,x=2y-2,3x-y=5,小组竞赛,练习:93页第1、2题,