人教版八年级数学上册第12章复习.ppt
第十二章 全等三角形,一.全等三角形:,1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?,2:全等三角形有哪些性质?,能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。,(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。,知识回顾:,一般三角形 全等的条件:,1.定义(重合)法;,2.SSS;,3.SAS;,4.ASA;,5.AAS.,直角三角形 全等特有的条件:,HL.,包括直角三角形,不包括其它形状的三角形,回顾知识点:,边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”),方法指引,证明两个三角形全等的基本思路:,(1)已知两边-,找第三边,(SSS),找夹角,(SAS),(2)已知一边一角-,已知一边和它的邻角,找是否有直角,(HL),已知一边和它的对角,找这边的另一个邻角(ASA),找这个角的另一个边(SAS),找这边的对角(AAS),找一角(AAS),已知角是直角,找一边(HL),(3)已知两角-,找两角的夹边(ASA),找夹边外的任意边(AAS),角的内部到角的两边的距离相等的点在角的平分线上。,用法:QDOA,QEOB,QDQE点Q在AOB的平分线上,角的平分线上的点到角的两边的距离相等.,用法:QDOA,QEOB,点Q在AOB的平分线上 QDQE,二.角的平分线:1.角平分线的性质:,2.角平分线的判定:,总结提高,学习全等三角形应注意以下几个问题:,(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;,(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;,(3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;,(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”,练习1:如图,AB=AD,CB=CD.求证:AC 平分BAD,2、如图,D在AB上,E在AC上,AB=AC,B=C,试问AD=AE吗?为什么?,解:AD=AE,3、如图,OBAB,OCAC,垂足为B,C,OB=OCAO平分BAC吗?为什么?,答:AO平分BAC,4、如图,AC和BD相交于点O,OA=OC,OB=OD 求证:DCAB,练习5:如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?,AB=ED,AC=EF,BC=DF,DC=BF,7:已知 AC=DB,1=2.求证:A=D,8、如图,已知,ABDE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。,ABFDEC,CBFFEC,ABCDEF,答:,9、如图,已知E在AB上,1=2,3=4,那么AC等于AD吗?为什么?,解:AC=AD,10、已知,ABC和ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD,变式:以上条件不变,将ABC绕点C旋转一定角度(大于零度而小于六十度),以上的结论还成立吗?,分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此ADBC。C符合题意。,说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。,例题精析:,连接例题,例2如图2,AECF,ADBC,ADCB,求证:ADFCBE,分析:已知ABC A1B1C1,相当于已知它们的对应边相等.在证明过程中,可根据需要,选取其中一部分相等关系.,例3已知:如图3,ABCA1B1C1,AD、A1D1分别是ABC和A1B1C1的高.求证:AD=A1D1,图3,例4:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。,分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出已知求证后,再写出证明过程。,说明:文字证明题的书写格式要标准。,如图:将纸片ABC沿DE折叠,点A落在点F处,已知1+2=100,则A=度;,50,例5、如图6,已知:A90,AB=BD,EDBC于 D.求证:AEED,提示:找两个全等三角形,需连结BE.,图6,例6、如图:AB=AC,BD=CD,若B=28则C=;,5、如图5,已知:AB=CD,AD=CB,O为AC任一点,过O作直线分别交AB、CD的延长线于F、E,求证:E=F.,提示:由条件易证ABCCDA 从而得知BACDCA,即:ABCD.,