人教版七年级数学(下册)第九章_不等式和不等式组教案.doc
人教版七年级下数学教案 哈尔滨市巨源中学校 曹刚第九章 不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。教学目标知识与技能1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。过程与方法1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.情感、态度与价值观1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。重点难点 一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。 课时分配9.1不等式 4课时9.2实际问题与一元一次不等式 3课时9.3一元一次不等式组 2课时9.4课题学习 利用不等式分析比赛 1课时本章小结 2课时备课时间授课时间课 型课 时9.1.1不等式及其解集教学目标1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。重点难点 不等式、一元一次不等式、不等式的解、解集的概念是重点;不等式解集的理解与表示是难点。教学过程 一、情景导入投影1一辆匀速行驶的汽车在11:20时距离A地50千米,要在12:00以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?没有。那是什么关系呢?从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。这些是不等关系。二、不等式的概念若设车速为每小时x千米,你能用一个式子表示上面的关系吗?50/x2/3 或2/3x5 像这样用“>”或“<”号表示大小关系的式子,是不等式。我们还见过像a+2a这样用“ ”号表示的式子,也是不等式。“>”、“<”、 “ ”叫做不等号,不等号也可以写成“”、“”的形式。总之,用不等号连接起来的式子叫做不等式。思考1:下列式子中哪些是不等式?投影2 (1)ab=b+a (2)35 (3)xl(4)x十3>6 (5) 2m< n (6)2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。注意:像中分母含有未知数的不等式不是一元一次不等式,这一点与一元一次方程类似。三、不等式的解和解集思考2:投影3判断下列数中哪些能使不等式2/3x > 50成立: 76,73,79,80,74. 9,75.1,90,60 76, 79,80, 75.1,90能使不等式2/3x > 50成立。我们把能使不等式成立的未知数的值,叫不等式的解.我们看到不等式的解不是一个, 你还能找出这个不等式的其他解吗?它的解到底有多少个? 如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。如所有大于75的数组成不等式2/3x > 50的解集,写作x >7 5,这个解集可以用数轴来表示。o75求不等式的解集的过程叫做解不等式四、例题例投影4在数轴上表示下列不等式的解集:(1)x>-1;(2)x-1;(3)x<-1;(4)x-1解: (1)(2)(4)(3)注意:1.实心点表示包括这个点,空心点表示不包括这个点;2、步骤:画数轴,定界点,走方向。、五、课堂练习课本123面1、2、3题。六、课堂小结1、什么是不等式?什么是一元一次不等式?2、什么是不等式的解?什么是不等式的解集?3、怎样表示不等式的解集?作业:备课时间授课时间课 型课 时9.1.2不等式的性质(1)教学目标1、 经历发现不等式性质的探索过程;2、理解不等式的性质。重点难点 不等式的性质是重点;运用不等式的性质进行判断是难点。教学过程一、问题导入对于比较简单的不等式,我们可以直接想出它们的解集,但是对于比较复杂的不等式,要直接想出解集来就困难了。因些,有必要讨论怎样解不等式。和学习一元一次方程先讨论等式的性质一样,我们先来探索不等式有什么性质。二、不等式的性质做一做:用“>”、 “<” 填空:投影1 请 (1)5>3 , 5+2 3+2, 5-2 3-2;(2)-1<3, -1+2 3+2, -1-3 3-3;(3)6>2, 6×5 2×5, 6×(-5) 2×(-5);(4)-2<3, (-2)×6 3×6, (-2)×(-6) 3×(-6)。观察(1)(2),类比等式的性质,你发现了什么规律?性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。 即 如果ab,那么a±cb±c.观察(3),类比等式的性质,你发现了什么规律?性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变. 即 如果ab,c0,那么acbc(或a/cb/c).观察(4),类比等式的性质,你发现了什么规律?性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。 即 如果ab,c0,那么acbc(或a/cb/c).思考:比较上面的性质2与性质3,看看它们有什么区别?性质2的两边乘或除的是一个正数,不等号的方向没有变;而性质3的两边乘或除的是一个负数,不等号的方向改变了。比较等式的性质与不等式的性质,它们有什么异同?等式的性质与不等式的性质1、2,除了一个说“等式仍然成立”,一个说“不等号方向不变”的说法不同外,其余都一样;而不等式的性质3说“不等号方向改变”,这与等式的性质说法不同。三、例题例1 投影2利用不等式的性质填“>”, “<” :(1)若a>b,则2a 2b;(2)若-2y<10,则y -5;(3)若a<b,c>0,则ac-1 bc-1;(4)若a>b,c<0,则ac+1 bc+1。分析:不等式的两边发生了怎样的变化?填“>”或“<”的依据是什么?解:(1)>,(2)<,(3)>,(4)<。四、 课堂练习1、判断正误:投影3(1)a < b ab < bb(2)a < b a/3b/3(3)a < b 2a < 2b(4)2a > 0 a 02、根据下列已知条件,说出a与b的不等关系,并说明依据不等式哪一条性质。投影4(1)a3 > b3 (2)a/3b/3(3)4a > 4b (4)1-1/2a1-1/2b3、填空投影5(1) 2a > 3a a是 数(2)a/3a/2 a是 数(3)ax < a且 x > 1 a是 数作业:备课时间授课时间课 型课 时9.1.2 不等式的性质(二)教学目标掌握一元一次不等式的解法。 重点难点 一元一次不等式的解法是重点;不等式性质3在解不等式中的运用是难点。教学过程一、复习导入投影1不等式的性质有哪些?不等式的性质与等式的性质有什么不同?和利用等式的性质可以解方程一样,利用不等式的性质可以解不等式。二、不等式的解法例1 解下列不等式,并在数轴上表示解集:投影2(1) x726 (2)3x < 2x1(3)2/3x 50 (4)-4x3分析:解不等式最终要变成什么形式呢?就是要使不等式逐步化为xa或x <a的形式。解:(1) x726根据等式的性质1,得x7+726+7 x33 33O(2)3x < 2x1 根据等式的性质1,得3x-2x < 2x1-2x x<1 1O(3)2/3x 50根据等式的性质2,得x 50×3/2 x 7 5 O75(4)-4x3根据等式的性质3,得 x-3/4。 O-3/4注意:运用不等式的性质1,实际上是方程中的“移项”。例2 解不等式:1/2x-12/3(2x+1) 投影1分析:我们知道,解不等式的依据是不等式的性质,而不等式的性质与等式的性质类似,因此,解一元一次不等式的步骤与解一元一次方程的步骤基本相同。解:去分母,得 3x-64(2x+1)去括号,得 3x-68x+4移项,得 3x-8x4+6合并,得-5x10系数化为1,得 x-2归纳:解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)糸数化为1。四、课堂练习课本127面练习1题;134面练习1题。作业:备课时间授课时间课 型课 时9.1.2 不等式的性质(三)教学目标运用不等式解决有关的问题,初步认识一元一次不等式的应用价值。重点难点 不等式的运用是重点;寻找不等关系是难点。教学过程一、复习新课上节课我们学习了不等式的解法,请问:解不等式的依据是什么?解不等式的步骤是什么?有很多问题与不等式相联系,需要运用不等式来解决。二、不等式的初步应用例1投影1三角形任意两边之差与第三边有着怎样的大小关系?分析:三角形任意两边之和与第三边有着怎样的大小关系? abc解:设 a、b、c为任意一个三角形的三条边的长,则a+bc, b+ca, c+ab.移项,得ac-b, ba-c, cb-a.上面的式子说明了什么?三角形中任意两边之差小于第三边。归纳:三角形任意两边之和大于第三边,任意两边之差小于第三边。例2 投影2 已知x=3-2a是不等式1/5(x-3)x-3/5的解,求a的取值范围。分析:由不等式解的意义,你能知道什么?解:依题意,得 1/5(3-2a) -3(3-2a) -3/5 1/5·(-2a)12/5-2a -2a12-10a 8a12 a3/2例3投影3 某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm,现准备继续向它注水用V(单位: cm3)表示新注入水的体积,写出V的取值范围。分析:新注入水的体积应满足什么条件?新注入水的体积与原有水的体积的和不能超过容器的体积。解:依题意,得 V+3×5×33×5×10 V105。思考:这是问题的答案吗?为什么?不是,因为新注入水的体积不能是负数,所以V0。 0V105在数轴上表示为: O105注意:解答实际问题时,一定要考虑问题的实际意义。三、课堂练习1、课本127面练习2;2、补充题:投影4小华准备用21元钱买笔和笔记本,已知每支笔3元,每本笔记本2.2元,她买了2本笔记本,请问她最多还能买几支笔?作业:备课时间授课时间课 型课 时第九章不等式复习一(9.1)一、双基回顾1、不等式:用等号(、)连接起来的式子,叫做不等式。1用不等式表示:x与1的差是负数: ; a的1/2与b的3倍大于2 ;x、y的平方和是非负数 。2、不等式的解和解集使不等式成立的未知数的值叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。注意:解集包括解,所有的解组成解集;解是一个数,解集是一个范围。2判断下列说法是否正确:4是不等式x36的解;不等式x21的解是x1;3是不等式x25的一个解;不等式x14的解集是x2.3、一元一次不等式:含有一个未知数并且未知数的次数是1的不等式叫做一元一次不等式。3下列不等式是一元一次不等式的是 .3x+5=1;2y-15;2/x+13;5+28;3+x2x.4、不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.即 如果ab,那么a±cb±c.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变. 即 如果ab,c0,那么acbc(或a/cb/c).(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 即 如果ab,c0,那么acbc(或a/cb/c).注意:不等式的性质与等式的性质有相通之处,又有不同之点;不等式的性质是解不等式的依据。4已知ab,填空:a+3 b+3, 2a 2b, - a/3 b/3,ab 0.5、解一元一次不等式5解一元一次不等式: 2x5x+6,并在数轴上表示解集。二例题导引例1 判断正误:若ab,则 ac2bc2;若ac2bc2 ,则ab;若2 a+12b+1, 则ab;若ab,则12 a12b.例2 解下列不等式,并把它们的解集在数轴上表示出来。(1)3(1x)2(x+9); (2) . 例3 a取什么自然数时,关于x的方程23x= a解是非负数?例4 小明和小丽决定把省下来的零用钱存起来,这个月小明顾虑了168元,小丽顾虑了85元,从下个月开始小明每月顾虑16元,而小丽每月存25元,问几个月后小丽的存款数能超过小明?三、练习提高夯实基础1、已知x的1/2与5的差不小于3,用不等式表示为 。2、若不等式组的解集为1x,则图中表示正确的是( ) A B C D3、设A 、B 、C 表示三种不同的物体,现用天平称了两次,情况如图所示,那么“A”、“ B ”、“C ”这三种物体按质量从大到小的顺序排应为( )(A) A B C (B)C A B (C) B A C(D) B C A 4、如果xy,下列各式中不正确的是 A、1/2x1/2y B、1/2x1/2yC、1/2 x1/2 y D、 1/2 x1/2 y5、当x 时,2-3x为非正数.6、已知点M(5m,-3)在第三象限,则m的取值范围是 。7、当x 时,式子3x5的值大于5x + 3的值。8、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为 。9、已知x=3-2a是不等式1/5(x-3)x-3/5的解,那么a的取值范围是 。10、解下列不等式,并在数轴上表示解集。(1)4x-1-2x+3; (2) 3(x+1) 2 (3)1/2 x-2/3 x-2 (4) 1/2x-71/6(9x-1)11、已知关于的方程的解是非正数,求的取值范围.能力提高12、已知a是一个数,且xy,则下列不等式中,正确的是( ) 、axayB、axay、a2xa2yD、a2xa2y13、不等式3(x-2)x-1的自然数解是 14、不等式axa的解集为x1,则的取值范围是( ) A 、a 0 B、a0 C、a0 D、a015、如果三个连续自然数的和不大于,那么这样自然数共有组_。16、解下列不等式,并分别把它们的解集在数轴上表示出来.(1)3-2(x-1)5x; (2)3/4-8x3-11/2x (3)4/5-(2x-3)/20 (4)17、某学校把学生的笔试、实践能力两项成绩分别按60%,40%的比例计入学期总成绩,小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则笔试的成绩至少是多少分?探索创新* 18、已知方程组,为何值时,?备课时间授课时间课 型课 时9.2 实际问题与一元一次不等式(一)教学目标 学会从实际问题中抽象出不等式模型,会用一元一次不等式解决实际问题。重点难点 用一元一次不等式解决实际问题是重点;找不等关系是难点。教学过程一、导入新课我们知道,在生产和生活中存在大量的等量关系,与此同时,我们也看到在生产和生活中存在着大量的不等关系,解决这些问题,用不等式比较方便。二、例题例1投影1 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题? 分析:“超过90分”是什么意思?本题的不等关系是什么?“超过90分”就是大于90分;不等关系是:答对的得分-答错或不答的扣分90。解:设小明答对x道题,则他答错或不答的题数为20-x。根据他的得分要超过90,得10x-5(20-x) 9010x-100+5x 9015x 90x 38/3 思考: 这是本题的答案吗?为什么? 这不是本题的答案。因为x是正整数且不能大于20,所以 小明至少要答对13题。例2 2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?分析:2002年北京空气质量良好的天数是多少?用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?本题的不等关系是什么?2002年北京空气质量良好的天数是365×55%;2008年北京空气质量良好的天数是x+365×55%;不等关系是:2008年北京空气质量良好的天数÷366 70%.解:设2008年北京空气质量良好的天数比2002年增加x天,依题意,得(x+365×55%)/366 70%去分母,得x+200.5 256.2移项,合并同类项,得 x55.45思考:这是本题的答案吗?为什么?本题的答案是什么?不是。因为x为正整数。x56答:2008年北京空气质量良好的天数至少比2002年增加56天。注意:用不等式解应用问题时,要考虑问题的实际意义。例1与例2中的未知数都应是正整数。三、课堂练习课本134练习2、3。四、课堂小结用一元一次不等式解决实际问题与用一元一次方程解决实际问题一样,要将实际问题通过列一元一次不等式转化为数学问题,然后通过解决数学问题来解决实际问题。作业:备课时间授课时间课 型课 时9.2 实际问题与一元一次不等式(二)教学目标 会从实际问题中抽象出不等式模型,进一步学会用一元一次不等式解决实际问题。重点难点 用一元一次不等式解决实际问题是重点;找不等关系是难点。教学过程一、导入新课 上节课我们讨论了用不等式解决实际问题,这节课我们继续讨论这个问题。二、例题例投影1 甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95收费顾客选择哪个商店购物能获得更多的优惠?分析:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑你认为应分哪几种情况考虑?分三种情况考虑:累计购物不超过50元;累计购物超过50元但不超过100元;累计购物超过100元。(1)如果累计购物不超过50元,则在两店购物花费有区别吗?为什么?没有区别。因为两家商店都没有优惠。(2)如果累计购物超过50元但不超过100元,则在哪家商店购物花费小?为什么?在乙商店购物花费小。因为乙商店有优惠,而甲商店没有优惠。(3)如果累计购物超过100元,那么在哪家商店购物花费小?因为两家商店都有优惠,所以要分三种情况考虑:设累计购物x元(x100),则在甲商店购物花费多少元?在乙商店购物花费多少元?在甲商店购物花费:100+0.9(x-100)元;在乙商店购物花费:50+0.95(x-50)。 若在甲商场购物花费小,则50+0.95(x-50)100+0.9(x-100)解之,得 x150 若在乙商场购物花费小,则50+0.95(x-50)100+0.9(x-100)解之,得 x150若在两家商场购物花费相同。50+0.95(x-50)=100+0.9(x-100)解之,得 x=150答:如果累计购物不超过50元,则在两店购物花费一样多。如果累计购物超过50元但不超过100元,则在乙商店购物花费小。若累计购物多于150元,在甲商场购物花费小;若累计购物等于150元,在两商场购物花费一样多;若累计购物多于100元少于150元,在乙商场购物花费小。注意:问题比较复杂时,要考虑分类解答。分类要做到不重不漏。三、课堂练习投影2某校两名教师拟带若干名学生去旅游,联系了两家标价相同的旅游公司经洽谈,甲公司的优惠条件是一名教师全额收费,其余师生按7. 5折收费;乙公司的优惠条件是全体师生都按8折收费若设标价为a元,那么哪个公司更优惠?四、课堂小结 1、 列不等式解应用题与列方程解应用题的步骤相同,所不同的是前者是不等关系,列出的是不等式,后者相等关系,列出的是方程。2、列不等式解应用题的关键是找出不等关系.找不等关系要抓住像“大于”、“不小于”、“超过”、“不足”、“至少”等等表示不等关系的词语。作业:备课时间授课时间课 型课 时9.3 一元一次不等式组(一)教学目标1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义;2、掌握一元一次不等式组的解法。重点难点 一元一次不等式组的解法是重点;一元一次不等式组的解集的表示是难点。教学过程一、情景导入看下面的问题:投影1现有两根木条a和b,a长10 cm,b长3 cm.如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求? 根据“三角形两边之和大于第三边,两边之差小于第三边”可知:c10-3且c10+3这就是说,第三边c要满足两个不等关系。那么c的长度究竟在什么范围呢?今天我们就来解决这个问题。二、一元一次不等式组的概念和解集把几个一元一次不等式合起来,组成一个一元一次不等式组。记作类比方程组的解,我们把几个不等式组的解集的公共部分,叫做不等式组的解集。解不等式就是求它的解集。我们可以利用数轴确定不等式组的解集。(1) 24 x4(2) 24 2x4(3) 24 无 解(4) 24 x4上面的表示可以用口诀来概括:大大取大,小小取小,大小小大中间找,大大小小不用找。前面不等式组的解集是7x13。注意:如果不等号中带有等号,空心圆就要变成实心圆。三、解不等式组例 解下列不等式组:投影2(1) (2)分析:你认为解不等式组应该分哪些步骤?求出各个不等式的解集;找出各个不等式的解集的公共部分(利用数轴)即解集解:(1)由(1)得x2 由(2)得x3 x3(2)由(1)得x8 由(2)得2x+5-36-3x x4/5原不等式无解。四、课堂练习课本140练习1。五、课堂小结1、一元一次不等式组的概念和解集。2、不等式解集的表示。3、解不等式组。作业:备课时间授课时间课 型课 时9.3 一元一次不等式组(二)教学目标进一步熟练一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。重点难点用一元一次不等式组解决有关的实际问题是重点;正确分析实际问题中的不等关系是难点。教学过程一、导入新课前面我们用一元一次不等式解决了一些满足一个不等关系的实际问题,事实上,有很多问题满足两个不等关系,这就要用到一元一次不等式组。下面我们就利用一元一次不等式组解决有关的实际问题。二、例题例1投影1 3 个小组计划在10天内生产500件产品(每天产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务。每个小组原先每天生产多少件产品?分析:“不能完成任务”的数量含义是什么?“提前完成任务”的数量含义是什么?解:设每个小组原先每天生产件x产品。依题意,得由(1)得x.由(2)得x.不等式的解集为思考:到此你能知道每个小组原先每天生产多少件产品吗?为什么?每个小组原先每天生产16件产品,因为产品的数量是整数,所以x16.答:每个小组原先每天生产16件产品.例2投影2 将若干只鸡放入若干个笼,若每4个放一笼,则有1只鸡无笼可放;若每5个放一笼,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?分析:鸡的数量怎么求?4×笼的数量1.你怎样理解“有一笼无鸡可放”?除去无鸡可放的一笼,剩下的最后一笼可能不足5只鸡,也可能恰好有5只鸡.由此可以得到不等关系:5×(笼的数量2)4×笼的数量15×(笼的数量1).解:设有y个笼,根据题意,得 5(y-2)<4y+15(y-1)即 解之,得 6y<11.思考:笼的个数y应满足什么条件?y是整数,且取范围内的最小值。y6 4y14×625.答:至少有25只鸡,6个笼。三、课堂练习课本140面2题。四、课堂小结1、列一元一次不等式组解应用题与列一元一次不等式解应用题的思想和步骤是一样的,不同的是前者列出的是两个不等式,而后者列出的是一个不等式。2、列不等式(组)解应用题的关键是找出不等关系.有时题目中含有 “大于”、“不小于”、“超过”、“不足”、“至少”等等表示不等关系的词语,有时却没有这样的词语。这时,我们就要抓住具有不等意义的句子加以分析,上面的两例就是这样,要细心地体会。作业:备课时间授课时间课 型课 时第九章小结一、知识结构 实际问题不等式不等式的性质一元一次不等式一元一次不等式组解不等式实际的答案 一、双基回顾1、一元一次不等式组几个一元一次不等式组成了一个一元一次不等式组。2、一元一次不等式组的解一元一次不等式组的各个不等式解集的公共部分叫做一元一次不等式组的解.3、解一元一次不等式组(1)分别求每个不等式的解集;(2)利用数轴找出它们的公共部分,即一元一次不等式组的解集。2解不等式组: 4、一元一次不等式(组)的应用列一元一次不等式(组)解应用题的步骤与列一元一次方程解应用题类似。3若点M(2m+1,3-m)在第三象限,则m的取值范围是 。二、例题导引例1 若不等式组的解集是1x3,求ax+b0解。例2小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少立方米?例3某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.求该次活动中获赠顾客人数及所准备的礼品数. 三、练习升华夯实基础1、在数轴上表示不等式组 的解,其中正确的是( ) 2、不等式的解集是 .3、不等式组的整数解是( ) 、, 、, 、, 、无解4、班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔 支。5、解下列不等式:(1) (2)6、某校在一次参观活动中,把学生编为8个组,若每组比预定人数多1人,则参观人数超过200人,若每组比预定人数少2人,则参观人数不大于184人,试求预定每组学生的人数能力提高7、已知一个等腰三角形的底边长5,腰长为x,则x的取值范围是 .8、不等式组的最小整数解是( )A、0 B、1 C、2 D、19、解下列不等式:(1) (2) 10、一个长方形的周长为60,长不小于宽,那么它的长的取值范围是什么?11、某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?12、乘某城市的一种出租汽车起价是10元(