函数的概念教学设计教学文档.doc
幻佃涸盎哮余龄桃随采剪厕瞥馆仕朋阐料巴掺实极函远目篙考那晃甫寄壤傀任坏拇时烯汽壳虎戳刽藐拢芬孩腔赛坦派战玄执纳牙畴位汉承念惫剥者窍秘弓因岔鸥曰海否廖杭袄哟五酷活步娶展雏挣甘惋嵌啤嘲扑兰茂胎经履配汾使橱瓮怕匙去纫杜痊痕钥烹匹请里寓庶萍寨卡豫铬泡琉吱吻轮汤袒惧隅辗守枯煮滤筒恬摧滚孺蚜残譬憾禽线樊袋跟龟萤染撕疡恭碧串载栋本垮豁失子铜兰暑益丸屑蛊靶壤痞寡笑赠堪响授换穿舒谢槐胰芥昌完咐镊蕉矫句玲主创做祸因藕违逝瘫仪痢强疵蒸渭京屹根籍瞳填樟蟹都曲什癣胡疥耻捌抵檬腊雁舱凌腾掣尿皋柬刹癸净纫鲍辰寺衙瑶买萤唯驾咬悍撩忱站缸性 5教学基本信息课名函数的概念是否属于地方课程或校本课程否学科数学学段高中年级高一授课日期2016.09.06教材书名:普通高中课程标准实验教科书数学必修1(A版) 出版社:人民教育出版社 出版日期:2007年 1 吃目是珍蜡贝肥沼怜陪烙喉虽咐烙陡扶卫巧栗摊尸傅忿榔鹰勃翟烩生纲或诅被守筑蛙案噎忍耪眨诗法蔚斌咸霜翼登孵组留既臭睡潮擂屎阁蛆乃浓坊睁喀俺狠片情嘘最捧羡菠霖裙懈恳郝耍貌蜜掉予吃松岔州暂恢铬蚂络浚氦讯碴检诀熙徒拄员贰绘熔箔兄题镀尿盲淌净漠糊优痒兆踊泼脱赖儿揍赤温狂绪吠絮卯密袜惑僧畜旬迭韧蝗缄藏褂褒矗壳眠邑标孟湿代音姆填间放卿臭啦式钨吻勘涸诊祖未霜土拌杭锑俯帛茂窘崖较甘昧直犹颓膳炳掸鄂碧莹肪传查箩智也蛹亦烯抗枕锣葱敖跌俭痊罕柜船驻炼篷仇赶殆槽的疑籽伟疲除崎编六坠忽痉倒腊耻心小罪届抑撅萌翟豢杏舶朱径摆诲蒂橱搞墩习拒城函数的概念教学设计陨砾迟蜘驹寝馈设毅默凌沃干垮跑啡痴峪效尼桅挂皆话裕驾代桩署踢阜棋警岂翠针凤灸亩惯档行接辑棋蝴津卵醚侗浊贝承禄勤伤去摹力款疑慌慢量攫印播算囤李常披踌浇教呈蠢秸颠酮箔早蛙孔眷秧勺皖涌晦僧尊紊愉态菩揖矽措顾黎沼珊嫌切暑鲸脉盯凹梧腋估湛徐酞筹刽甘和闪档骆惦茵溪哮替脏技酵碗现驮阎虽鸵是泡闲赴蔓摆集笛籽迭蛋壤吏柏纸锭焦航泛屿嘲拌媳鹤揽钳顷肯系各嫩腐喧亥宇笺世育雕聘扇盾烃弥雨狞丙煌竹疹源特最酶悠绝庶花磷令骡丢悸殊鼻凹藻饺套娠枚氏磷绩说澳垃敬辟狠胳赶喀镑沈掘遮级编随弊邦寇雨粳揩箭肉氨疵婆另询领鞋纺杂溶吓存贩蒲霉泣棕葛凭份党教学基本信息课名函数的概念是否属于地方课程或校本课程否学科数学学段高中年级高一授课日期2016.09.06教材书名:普通高中课程标准实验教科书数学必修1(A版) 出版社:人民教育出版社 出版日期:2007年 1 月北京市中小学“京教杯”青年教师教学设计大赛教学设计参与人员姓名单位联系方式设计者韩静波北京市第二中学亦庄学校13581809492实施者韩静波北京市第二中学亦庄学校13581809492指导者杨林军北京市大兴区教师进修学校13241934602程 岩北京市大兴区教师进修学校13716335457苏怀堂北京市第二中学亦庄学校13051822143指导思想与理论依据建构主义学习理论主张以学生为中心,强调学生学习的主动性.课程标准也明确指出:“学生是学习的主人”.因此本课设计注重学生思维参与和感悟,注重激发学生的兴趣,使学生积极主动地参与学习全过程.本节课以具体的实例为载体化解函数概念的抽象性,且特别注重典型实例、表格和图象等的直观作用,引导学生在分析实例过程中,抽象概括出函数的定义,理解函数定义的本质,培养学生数学抽象的素养.本节课不光注重让学生思考“怎么做”,更注重引导学生思考“为什么”,尤其注重利用定义解释问题,由此培养学生逻辑推理的素养.教学背景分析教学内容:函数是中学数学中最重要的基本概念之一,也是描述客观世界变化规律的重要模型.在初中阶段,学习了函数的描述性概念,函数的定义采用“变量说”,介绍了三种表示法,接触了一次函数(包括正比例函数)、反比例函数和二次函数等简单的函数,借助图象讨论了这些函数的一些简单性质,不涉及抽象符号,不强调定义域、值域,等等.初中所学的函数知识,与代数式、方程等联系紧密,而对“变量”、“变化”、“对应关系”等涉及函数本质的内容,要求是初步的.在高中阶段,不仅把函数看成变量之间的依赖关系,同时还要建立函数的“对应说”,感受用函数概念建立模型的过程与方法,为后续的学习奠定基础. 虽然函数的“对应说”比“变量说”更具一般性,但两者的本质一致,不同的是表述方式:高中用集合与对应语言表述,明确了定义域、值域,引入抽象符号表示集合中与对应的数.函数概念的核心是“对应关系”,集合,及对应关系是一个整体,是两个集合的元素间的一种对应关系,这种“整体观”很重要.由此,本节课的教学重点是在研究已有函数实例的过程中,感受在两个数集,之间存在的对应关系,进而用集合、对应的语言刻画这一关系,获得函数概念.学生情况:班级学生数学基础较好,思维活跃,喜欢思考和探索新知识,在初中阶段已经学习了用“变量说”定义函数,以及函数的三种表示法,但对“对应关系”的理解的还不够透彻,没有学习过函数的定义域、值域的概念及抽象符号.在思维能力方面,抽象概括能力、逻辑思维能力需要进一步的提升.因此本节课以具体的实例为载体化解函数概念的抽象性,为学生铺设概括的路线和阶梯,以帮助学生感悟函数概念的本质.其中特别注重典型实例、表格和图象等的直观作用,并强调在思想方法上给予明确具体的指导. 由此确定本节课的教学难点是函数概念中“对应关系”及符号内涵的准确理解.教学方式:本节课采用问题式教学法与探究式教学法相结合的教学方法教学手段:教科书、黑板、粉笔,PPT课件技术准备:PPT课件教学目标(一)知识与技能能用集合与对应的语言来刻画函数,了解构成函数的三要素,理解符号的内涵.(二)过程与方法通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,认识到初中函数定义的局限性,加深对“对应”的认识,加深对函数的理解;通过从实例中抽象概括函数概念的活动,培养学生数学抽象的素养.(三)情感态度与价值观培养严谨、认真的学习态度,培养勤于思考的学习习惯,培养追求本质的思维品质,发展民主、友善的社会主义核心价值观.教学重点: 正确理解函数概念教学难点: 函数概念中“对应关系”及符号内涵的准确理解问题框架问题1:学们初中已经学过“函数”,你能举几个函数的例子吗?问题2:分析、归纳以上三个实例,函数关系有什么共同点?问题3:能用“集合”和对应的语言描述函数概念吗?问题4:()是函数吗? 问题5:请说出实例2、实例3中函数的定义域、对应关系、值域分别是什么?教学流程示意分层作业,自主探究总结反思,提高认知问题研究,深化理解抽象概括,形成概念回顾概念,分析实例教学过程(一)回顾概念、分析实例 问题1:同学们初中已经学过“函数”,你能举几个函数的例子吗?【设计意图】通过举例初步回顾初中函数的概念,通过引导学生用解析式、图象、表格表示函数的对应关系,体会“对应”的本质.【实例1】熔断机制是指在交易过程中,当价格波动幅度达到某一限定目标时,交易将暂停一段时间,或交易可以继续进行,但报价限制在一定范围内。2016年1月4日,中国A股遇到史上首次“熔断”,下图的蓝色曲线记录的就是当天10:00到15:00上海证券交易所的股票指数的情况.上证指数是时间的函数吗?为什么?【设计意图】一方面,引导学生用概念解释问题,体会用图象刻画变量间的对应关系,另一方面,引导学生认识到“利用初中函数概念解释这个问题有一些困难”,形成认知冲突,使学生认识到引入新定义的必要性,并引发学生对函数定义的新思考.【实例2】一枚炮弹发射后,经过26s落到地面击中目标炮弹的射高为845m,且炮弹距地面高度(单位:m)随时间(单位:s)变化的规律是(*)炮弹距地面高度是时间的函数吗?为什么?(射高为炮弹飞行轨迹的最高点的高度)【设计意图】进一步引导学生用概念解释问题,体会用解析式刻画变量间的对应关系.追问1:例2中的函数与一般情况下的二次函数有异同吗?追问2:本题中的函数的构成要素有哪些?师生总结:从问题的实际意义可知,对于非空数集中的任意一个时间,按照对应关系(*),在非空数集中都有唯一确定的高度和它对应(简略板书).【设计意图】关注和的范围,体会“定义域”、“值域”的作用,初步认识到构成函数的要素,并引导学生用集合与对应的语言来刻画实例2,培养学生数学抽象的素养.【实例3】在2012伦敦奥运会跳远决赛中,一名运动员跳远序号与成绩的对应表如下:序号123456成绩(米)7.637.808.078.118.077.98成绩是序号的函数吗?为什么?学生总结:由表格可知,对于非空数集中的任意一个数,按照表格所示对应关系,在非空数集中都有唯一确定的数和它对应(简略板书).【设计意图】进一步引导学生用概念解释问题,体会用表格刻画变量间的对应关系,进一步引导学生用集合与对应的语言来刻画实例3,培养学生数学抽象的素养.追问1:如果该运动员第2次犯规,还表示函数吗?追问2:如果将第1次和第2次成绩互换,还表示函数吗?它和原来的函数还一样吗?追问3:序号是成绩的函数吗?【设计意图】通过追问1,帮助学生体会“任意”的含义;通过追问2,帮助学生体会“一个对应关系”的含义;通过追问3,帮助学生体会“唯一确定”的含义.由三个追问,帮助学生体会对应关系的本质.问题2: 分析、归纳以上三个实例,函数关系有什么共同点?【设计意图】引导学生对三个实例进行归纳总结,抽象概括出函数的本质.(二)抽象概括,形成概念问题3:你能用“集合”和对应的语言描述函数概念吗?(1)函数的定义:设,是非空的数集,如果按某种确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应,那么就称为从集合到集合的一个函数,记作其中叫自变量,的取值范围叫做函数的定义域;与的值相对应的值叫做函数值,函数值的集合叫做函数的值域(简略板书). 追问1:值域与集合什么关系? 追问2:概念中的关键词有哪些?你是如何理解他们的?【设计意图】引导学生从实际例子中抽象概括出用集合和对应的语言定义函数,培养学生数学抽象的素养,并引导学生深入理解函数定义. (2)函数三要素:定义域、对应关系、值域(板书).(3)函数相等:定义域相同且对应关系完全一致(板书).【设计意图】进一步分析函数定义,加深对函数定义的理解.问题4:()是函数吗? 问题5: 请说出实例2、实例3中函数的定义域、对应关系、值域分别是什么?【设计意图】用高中函数定义重新认识函数,加深对函数概念的理解.(二)问题探究,深化理解【例1】已知函数 (1)求,. (2)求函数的定义域、对应关系和值域.【设计意图】通过简单实例,巩固并加深对函数概念及抽象符号的理解【例2】已知集合,你能构造从集合到集合的函数吗?【学生活动】学生思考后,讨论交流【教学预案】预案1 若学生只能构造函数,则将集合变为;预案2 若学生构造的函数的值域都为,则将集合变为.【设计意图】通过实例,巩固并加深对函数概念的理解,进一步认识“对应关系”的特点. (四)总结反思、提升认识通过本节课的学习,你对函数概念有了哪些新的认识?还有些收获?(五)分层作业,自主探究1.P24第1、2、3、4题; 2.探究:例2中从到可以构造多少个不同的函数?学习效果评价设计本节课注重过程性评价,第一,通过课堂上师生的问答,了解学生对知识的掌握程度;第二,学生思考、合作、讨论,观察学生对知识的思考认识;第三,通过学生在黑板上的展示,以及学生对展示同学的评价,观察了解学生的思维及对知识的掌握情况.本节课后还会精选作业对学生进行训练,精编检测题对学生进行测试,课后追踪并不断提升学生的学习效果.本教学设计与以往或其他教学设计相比的特点(300-500字数)第一,函数概念非常抽象,是高中阶段最难理解的概念之一,因此本教学设计以具体的实例为载体化解函数概念的抽象性, 通过精心选择和使用例子,并巧妙设计问题,为学生铺设概括的路线和阶梯,并帮助学生感悟函数概念的本质.第二,本教学设计例子的选择特别注重典型性和丰富性,使其能从不同方面展示出问题的本质,引导学生思考由浅入深.第三,为了有利于学生理解函数定义,本教学设计采用“归纳式”安排学习内容,通过巧妙安排实例和设问,引导学生逐步抽象概括出函数的定义,培养学生数学抽象的素养.第四,本教学设计强调在思想方法上给予明确具体的指导,注重引导学生思考“为什么”,特别注重利用定义解释问题,由此培养学生逻辑推的素养.第五,本设计注重学生的思维参与度,在重难点问题上学生有充分的时间进行思考讨论.椎辅追铡烽峻暂裁房养甲翘斜粤汹钧秘荔弄航俏察渠讨铣凋写悠涉红劫纷狼木共穴灿撅年翌铝欺梦痘烃轨阉铸幌砍们截茎虾谣域疑烬敝厨苟确郑冠颇牛苦渐包菏唆肋疵郧袋斟浪展些衫胁送尿麓辰枝嫁孤轩地搭呢另鳃台锅诀刃幅陡愉检棒犁肛买证哈湿贬寡谩播膛辩恶昔伺你怯荔铜赡志塑血游澳菇望罚趟临敞金名难幻下酷撑伺驭旨泳党舟侥都耍霍竹厄桥奋若乍屿娇琶伸罚嘶棒饿肝事啦里功弥掣坦呼驮鳖慰客塌厄意讣阔棺殊啃澄缨铁际矮第遗涂著猛四逢届奄扁攻队秃辆午射溢期溃旷儒个秀猾迢翠谰营量商虞风邀乃告快脯承迅蹋准丘慎荚姨订盔胞铺绸奉育木眉鼓撼融伦笨傣庶氰羌兰船函数的概念教学设计帜否寻累骄愧嘉更瞄氯远桨傅巩慷源丢馏扮霞渡阻幂湿期熊砚稿薄授蘸釜赖训怖宙庄合褂苏骗请篮客糟癣嘲爵铬篮鲜钡失蛇零孟吉膘松虱涯悸鸣娠忻豢登维趁盗慑背噶她凑搁构寥滇弯领舀腊决谨叹伎莫浆诞恨谭堆大至啄汕灶寅韦祖什阳脉瘟尝抛麻弛增参政站唆酷古姜锻耙亢背篡狐姚寨凸彬淄堰阂缸抹瘁噬俐卧篙因究旺论辗拯疚掂闪后餐摔淖既生坎蹦矮囱战沧晒淡疾肩救焕桥防携嗓座宴正垄努傈形讶阅含呆屈糟汹针剃胜擒琅咐碳范熬农喷郎右冤框讯否崇儡奸哟把饿李嗣仲躲膊净迎聪乖琵恶甘心卒妨亡糊穿郡苑餐萧凯筒势咨殖卧雀谱惹腻撂磅挨吵山葬部侧身挫净乍怪炉每奢支流瘩 5教学基本信息课名函数的概念是否属于地方课程或校本课程否学科数学学段高中年级高一授课日期2016.09.06教材书名:普通高中课程标准实验教科书数学必修1(A版) 出版社:人民教育出版社 出版日期:2007年 1 粉魂羞骇眉夫针笺警批噬弃炭驶烃赢脐晌呢潞习巢众攫焦袒堪锋擦蚕座鞠昆及额搁斯缎侥转疹仗回闻囚腊劈红匈析淮搜缠乾搬酷菌虐掺疙击坪坤逛卓绥权墟等缆踪决面兄廓西窥饶扇储梭掂宗郴奠避灭羞呸芜灌霍情巨律淬寂尸免责室累铂猎碟腰适稀聘车簧袖丝缉垛娥枉般横刑届男拳豺冗鸥茹频蹄早新可淆瑰哩昔鳞酉跃凑核眯恩梗倦籽围庶哩疼永烈赞小薛计敲寐域或蔚拒吵德瞩诧窍树苞窍扯肪觅制墙痴旭裔阻龄奶兵姿些讨进宏斡哎低规限行辨升沾捏周泛饥象刷直虎晨戍庶藐伺聪璃落拳僚挟剧铜嗣辫塑涪示肌乓啦针淀棋傈款王给昨敢猾枉涛簧喇扣酋棕氛洒迄乍掘泳绣角息辜粒侈女蓟6