轴对称(1)课件.ppt
人教版八年级数学(上册),13.1 轴对称(1),学 校:安康市旬阳县赵湾初中 授课人:李 兵,60年代民居,现代民居,上述这组图片反映了我们的祖国发生了巨大的变化,这些图片中隐藏着怎样的数学奥妙呢?这就是今天我们要学习的内容。轴对称对我们来说并不陌生,像刚才这些房屋建筑、服饰、桥梁设计都是从轴对称的角度进行考虑的。那同学们想不想设计类似图形呢?今天我们就从最简单的图形设计开始,观察欣赏,【像这样,把一个图形沿某一条直线对折,直线两旁的部分能完全重合。这个图形就叫做轴对称图形,这条直线叫做它的对称轴】,你能列举生活中类似的图形吗?,思考回答(1)以上图形有什么共同特征?(2)如果将每个图形沿着某条直线对折,结果会怎样?(3)若将具有这些特征的图形称为轴对称图形,你能说说什么是轴对称图形吗?,(1)判断下面的数字或字母是不是轴对称图形?,A,G,0,5,(2)选择:下列图案中不是轴对称图形的是().,A,B,C,D,D,2:想想试试,你能行!,3:挑战极限,超越自我!,下面的图形都是轴对称图形,请说出每个图,形有几条对称轴?在什么地方?,(1),(2),(3),(4),刚才我们研究的是一个图形,若是两个图形又会怎样呢.,活动三:观察思考,再探新知,问题1:做一做 在一张白纸上滴一点墨水,沿(墨水)外某直线对折。得到几个图形?所得图形有什么关系?,问题2 猜一猜:下列每对图形沿图中直线折叠后,结果会怎样?,【像这样,把一个图形沿某一条直线折叠,它能和另一个图形完全重合。就说这两个图形关于这条直线对称,简称轴对称。这条直线叫做它的对称轴。】,下列给出的每对图形中的两个图案是否成轴对称?为什么?,(1),(2),(3),问题3:,问题3 观察下面的各个图形,找出哪两个可以放在一起形成轴对称?,(1),(2),(4),(5),归纳:成轴对称的两个图形全等。,全等的两个图形一定成轴对称吗?成轴对称 的两个图形一定全等吗?,以上,我们学习了轴对称图形与轴对称,它们之间有怎样的关系呢?,例如:这里的两束花看成两张图片,它们成轴对称吗?,如果把它们看成一幅图片时,它是轴对称图形吗?,说明:轴对称与轴对称图形只是人们看的角度不同而已,在一定的条件下它们可以相互转化。二者有着密切的关系。,名称,一个图形,两个图形,轴对称图形,轴对称,把成轴对称的两个图形看成整体就是一个轴对称图形,把轴对称图形沿对称轴分成两个图形,这两个图形就成轴对称。,活动四:合作交流,辨析概念,联系,区别,图形的个数,重合方式,一个图形的两个部分能互相重合,一个图形和另一个图形能完全重合,折叠方式,相互转化,沿着某一条直线折叠,问题1:一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?,活动五:学以致用,深化新知,问题2,如图DEF和ABC成轴对称,根据图中条件,求 DE的长及DEF的周长。,解:DEF和ABC成轴对称,DEFABC,DE=AB=4,DF=AC=8,DEF的周长=6+8+4=18,如图,ABC和ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,线段AA、BB、CC与直线MN有什么关系?,1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(通常也叫线段的中垂线)。,2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,3、如果一 个图形是轴对称图形,那么对称轴是任何一对对应点所连线段的垂直平分线,活动六 梳理归整,收获成功,通过本节课的学习,你有 什么收获想与大家分享?,还有什么问题需要帮你解决?,活动七:推荐作业,延展新知,必做题:,1.借助网络,收集3幅轴对称图形,再收集2幅成轴对称的图案。,2.以“,”(即两个圆,两个三角形,三条线段)为条件,设计一个有实际意义的,选做题:,轴对称图形,并写上适当的解说词。,AE3cm,,3.如图,,ABC中,,ADC是轴对称图形,DE是对称轴,,ABD的周长是13cm,求,ABC的周长。,A,B,C,D,E,知识的获得在于对已有知识做进一步的探索!,谢谢指导,再见。,服饰文化,机动欣赏,脸谱艺术,剪纸艺术,银行标志,美丽的昆虫,课外思考:怎样设计轴对称图案呢?如何作一个图形关于某条直线的轴对称图形呢?,银行标志,美丽的昆虫,课外思考:怎样设计轴对称图案呢?如何作一个图形关于某条直线的轴对称图形呢?,