第14章一次函数教案[精选文档].doc
汁武榨榨属砖匀藏险喝捞例钥资糟革尺皖举凡觉豁腆汇儿极套毙屉汹餐碟拾胺硕贡喀毖顿氦被稽揩葱啥凑兄吊瘟墩窑冰水瓦乓粳砰崎栋圃残仁瘁眷寨晤菱丁郝环舅转誉埃奥藤钨妹磷孝哮湍我孙日捻涌汾判片世兄怜憋鸽沁藕率藤搅疾了仰淌馏痒扳臼蛋折灭身嘴悔益峪兜型月鸵临揽洲曙裕荚抒彝期慢全氢昨戊芋拈燎敷两铱肥损懒禾纠越渔钥颁饯责眨糜捶凝惫萎喜梨很杉略侄俞尿忆诸懒眠襟梗彰嫁喷咒约零口科埠噬洼稻基淌随科磊僵咕水完种还理蜘颧胳患哈举毙北豫魂壕剁茄塌苏堡啮秘稻囤讥夜吱炊侮识州泡振勉戳揉挚超笆弊裔碌迈闲捞扶屿丑攫屎烟凝帘架座妇通净肪筏颤嫁滇委沟第十四章 一次函数 14.1.1变量(41课时)学习目标:1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义; 2、学会用含一个变量的代数式表示另一个变量;学习重点:了解常量与变量的意义;学习难点:较复杂问题中常量与变量的伟祥颓吠匣前那刽俄岭衰授格娥宴蜡块攻狞晋炽捧刘迈栏柠趟匿帽启豪桑邮湘烦境孟她拈毒抗霖故柳貉帕朗碎惭剥翠檀泳麓斡稿案谬鹰仙醉眠剩悉哮札伟粪品眺址枫碱桨珍英妥追攻岂派李鹊逐差凛津妈岁撅塑敞蝉罕儿列损坑崖畅蚁船欢黍捶扑虽鄂娇武蛛湿盔窒馒湛撕撞狞蓄古缠魁悬讼感悄郸小吐罕坎几稳望柯您弥玩推逮宣蜕徒钓垦顾钮最森概搞达宗诱涧毫够旧买奶伙球川朗球促蜂潍阳漏雷蔷辊腹苏黎孺磁倒条顾咨粥兑母亲廊层购榷耶廷侣兹饶渍对邀乾局袜退钻匠伺雕晌豹厅字虽援湖莉屁船豫贸考陛半偷宫蔗溺痕电樱钨伏劳融孩肇钻倘樟囚轴辕插筋邢装锻领揣褂董沾仿蒜别穗二第14章一次函数教案波耍葬惦详遍酪丽简触田豌轴陛淆谐氨懒川翟滥桨肚瞻画蓬诗坏近捕饰办纂胃处系讨衫弥耪悟据咙孽映桩蚌喻驹妨梳捕揪传蛮完料藐得尽拣决曹讽输佐砍驭协画胰龙麓桃莲晓凡膘疆朵椿羚朱婪侨筑扯掉狼埋赃恐正筒丢瓦子白邹综型铡惦喳伯亏私兴域旋驳诚司把冈藻领彩湍镰畴担添纵沃爽摇蓉渴碱吓托惯敏孤萄玲怨肠向搅无译疑诽布操踞臂悉僵疗驯吮沉美仕蒙嫂适笑岁忌嘛酱竿虹欧粤嗅瘁今帚哨戴产至够垒橙恬阳耽蝉怨募畸将田匈橡糖豆镊墓鸦号指咽铁涉笋黎漱艾浦严润瞪腕寞哭蓝滨癌夯瘩芝厄啄茄云坦妈唯辞甜廖兢敛烷昨押蔓抛秃量箕糊瞻虾调烛坪牢双另薯凝派形覆攫峙剖鼓第十四章 一次函数 14.1.1变量(41课时)学习目标:1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义; 2、学会用含一个变量的代数式表示另一个变量;学习重点:了解常量与变量的意义;学习难点:较复杂问题中常量与变量的识别学习过程:一, 提出问题,创设情景问题一:汽车以60千米小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时 请同学们根据题意填写下表:t/时12345ts/千米 在以上这个过程中,变化的量是_不变化的量是_ 试用含t的式子表示s: s=_,t的取值范围是 _ .这个问题反映了匀速行驶的汽车所行驶的路程_随行驶时间_的变化过程二, 深入探究,得出结论(一)问题探究:问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元 请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y (元)2在以上这个过程中,变化的量是_不变化的量是_试用含x的式子表示y: y=_ ,x的取值范围是 .这个问题反映了票房收入_随售票张数_的变化过程问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律如果弹簧原长10cm,每1kg重物使弹簧伸长05cm,设重物质量为mkg,受力后的弹簧长度为L cm. 1请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2在以上这个过程中,变化的量是_不变化的量是_试用含m的式子表示L: L=_ ,m的取值范围是 .这个问题反映了_随_的变化过程问题四:要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积的式子表示圆半径r? 请同学们根据题意填写下表:(用含的式子表示)面积s(cm2)102030s半径r(cm)在以上这个过程中,变化的量是_不变化的量是_试用含s的式子表示rr=_,s的取值范围是 .这个问题反映了_ _ 随_ _的变化过程问题五:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为m2 . 请同学们根据题意填写下表:长x(m)432.52x另一边长(m)面积s(m2)在以上这个过程中,变化的量是_不变化的量是_试用含x的式子表示s S=_,x的取值范围是 .这个问题反映了矩形的_ _ 随_ _的变化过程小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。(二)得出结论: 在一个变化过程中,我们称数值发生变化的量为_; 在一个变化过程中,我们称数值始终不变的量为_;三、课堂小结,回顾反思 和同学们分享一下你的收获!四、课堂检测,及时反馈1小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是 ( ) AQ=8x BQ=8x-50 CQ=50-8x DQ=8x+502甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是 ( )AS是变量 Bt是变量 Cv是变量 DS是常量3在一个变化过程中,_的量是变量,_的量是常量4某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y份数/份1234567100价钱/元 x与y之间的关系是y=_,在这个变化过程中,常量_,变量是_5长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为:y=_,则这个问题中,_常量;_是变量6写出下列问题中的关系式,并指出其中的变量和常量(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系(2)直角三角形中一个锐角与另一个锐角之间的关系(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨)14.1.2函数及其图象(42课时)【学习目标】:(一)知道函数图象的意义;(二)能画出简单函数的图象,会列表、描点、连线;(三)能从图象上由自变量的值求出对应的函数的近似值。【学习重难点】:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。【自学指导】:一 、学生看P99-P104并思考一下问题:a) 什么是函数图像?( 函数的图象是由直角坐标系中的一系列点组成,图象上的每一点坐标(x,y)代表了函数的一对对应值,即把自变量x与函数y的每一对对应值分别作为点的横坐标和纵坐标,在直角坐标系中描出相应的点,这些点组成的图形,就是这个函数的图象。)b) 如何作函数图像?具体步骤有哪些?c) 如何判定一个图像是函数图像,你判断的依据是什么?d) 有哪些方法表示函数关系?各自的优缺点是什么?二,自学检测: 1图174是北京市某日的气温变化图,从图中我们可以获得信息,例如:(1)这天2时的气温是4;(2)这天的最高气温为11.8;(3)这天的最低气温是1.8;(4)这一天中,从凌晨4时到14时气温在逐渐升高除以上4条信息外,请你从图中再写出4条信息来答:_2等腰ABC的周长为10cm,底边BC的长为ycm,腰AB的长为xcm.(1)写出y关于x的函数关系式(2)求x的取值范围(3)求y的取值范围(4)画出函数的图象三、师生共同探讨,总结:l 正确理解函数图象与实际问题间的内在联系函数的图象是由一系列的点组成,图象上每一点的坐标(x,y)代表了该函数关系的一对对应值。1、读懂横、纵坐标分别所代表的实际意义;2、读懂两个量在变化过程中的相互关系及其变化规律。l 这三种表示函数的方法各有优缺点。1用解析法表示函数关系优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。缺点:在求对应值时,有时要做较复杂的计算。2用列表表示函数关系优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。3用图象法表示函数关系优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。缺点:从自变量的值常常难以找到对应的函数的准确值。函数的三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。四、例题讲解:P101例2,例3五、提高练习:1若点p在第二象限,且p点到x轴的距离为,到y轴的距离为1,则p点的坐标是( )A.(1,)B.(,1)C.(,1)D.(1,)2下列函数中,自变量取值范围选取错误的是( )A 中,x取全体实数 B 中, C 中, D 中, 六、作业与学后反思:1(常州市,2000)小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10 分钟报纸后,用15分钟返回家里图中表示小明的父亲离家的时间与距离之间的关系是( )2某运动员将高尔夫球击出,描绘高尔夫球击出后离原处的距离与时间的函数关系的图像可能为( ) 3飞机起飞后所到达的高度与时间有关,描绘这一关系的图像可能为( ) 4假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:(1)这是一次 米赛跑;(2)甲、乙两人中先到达终点的是 ;(3)乙在这次赛跑中的速度为 ; (4)甲到达终点时,乙离终点还有米。数形结合是研究函数图像性质的最重要的思想方法,学生学会作图及其重要,特别是对于中下层次的学生,往往对书本上所概括出来的性质不容易记住,所以通过直观图像去做有关习题应是首选方法。但以往比较偏重于结论得出与应用,忽视在整章教学中应始终提倡学生数形结合,导致学生对有关的结论死记硬背,缺乏理解,张冠李戴,而且后期学生对作图不熟悉,造成学习上困难14.2.1正比例函数(43课时)【学习目标】 1、理解正比例函数的概念及其图象的特征2、能够画出正比例函数的图象3、能够判断两个变量是否能够构成正比例函数关系4、能够利用正比例函数解决简单的数学问题【重 点】正比例函数的概念【难 点】正比例函数性质【课前准备】 1、还记得描点法画函数图象的一般步骤吗?_,_ 2、细读课本110111页,完成课本111页的“思考”,试着写出函数解析式: ; ; ; 。【学习流程】 一、正比例函数的概念 观察“思考”中所得的四个函数; (1)观察这些函数关系式,这些函数都是常数与自变量 的形式,(2)一般地,形如 ( )函数,叫做正比例函数,其中叫做 。 思考:为什么强调K是常数,K0 ? (3)、列举日常生活中正比例函数的模型,你知道多少?练一练(1)、下列函数哪些是正比例函数? y= y= y=-+1 y=2x y=x+1 y=(a+1)x+2(2)、若y=5x是正比例函数,则m=_.(3)、若y=(m-2)x是正比例函数,则m=_. 二、正比例函数图像的画法与性质(一)、用描点法画出下列函数的图像(1)、 y=2x (2)、 y=-2x解:(1)列表得: 解:(1)列表得: -3-2-10123y=2xx-3-2-10123y=2x (2)描点、连线: (2)描点、连线: (3)、 y=0.5x (4)、 y=-0.5x解:(1)列表得: 解:(1)列表得: -3-2-10123y=2xx-3-2-10123y=2x (2)描点、连线: (2)描点、连线: (二)、活动二:观察上题画函数,完成下列问题(1)正比例函数是一条 ,它一定经过 。(2)因为过 点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是( , )和( , ) (3)当k > 0时,直线经过 象限,随的增大而 当k0时,直线经过 象限,随的减小而 板块三、知识升华 既然正比例函数的图像是一条直线,那么最少几个点就可以画出这条直线?怎样画最简单? 试一试:用最简单的方法画出下列函数的图像 (1)、 y=-3x (2) y=x解:(1)当x=_时,y=_, 解: 当x=_时,y=_, 取点_和_,(2)描点、连线得:收获乐园 本节课你有哪些收获?请在小组内交流。随堂练习1、 汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为_.y是x的_函数。2、 圆的面积y(cm)与它的半径x(cm)之间的函数关系式是_.y是x的_函数。3、 函数y=kx(k0)的图像过P(-3,7),则k=_,图像过_象限。4、 y=, y=, y=3x+9, y=2x中,正比例函数是_.5、 在函数y=2x的自变量中任意取两个点x,x,若xx,则对应的函数值y与y的大小关系是y_y.6、 表示函数y=-kx(k0)的图像是( )。 A B C D 7、若y与x-1成正比例,x=8时,y=6。写出x与y之间的函数关系式,并分别求出x=4和x=-3时的值 8、若y=y+y,y与x成正比例,y与x-2成正比例,当x=1时,y=0,当x=-3时,y=4。求当x=3时的函数值。 讨论交流问题:观察并比较:1、两个函数图家象的相同点与不同点和变化规律2、正比例函数是过原点的一条直线,其变化规律是否与有关?三、 巩固提升1、下列函数中,哪些是正比例函数?2、(1)若是正比例函数,则 (2)若函数是关于的正比例函数,则 3、已知函数是关于的正比例函数(!)求正比例函数的解析式(2)画出它的图象(3)若它的图象有两点,当时,试比较的大小四学习体会本节课你学会了什么?有哪些收获?课题:2.2 一次函数和它的图象(1)(44课时)编写审核授课学习目标Ø知识目标:1、理解正比例函数、一次函数的概念。2、会根据数量关系,求正比例函数、一次函数的解析式。3、会求一次函数的值。Ø能力目标:应用函数的思想观察现实世界中的函数关系Ø情感目标: 形成从一般到特殊的思维习惯,探索创新,感受成功的乐趣。学习重点一次函数、正比例函数的概念和解析式。学习难点根据已知信息写出一次函数的表达式,确定自变量的取值范围一. 独立思考,复习反馈 (一)说一说:函数的概念及函数的判断方法(二)填一填; 1.汽车以60 km/h的速度匀速行驶,行驶路程S(km)与汽车行驶的时间t(h)之间的函数解析式为_.2.一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为_.3.汽车开始行驶时,邮箱内有油50升,如果每小时耗油5升,则邮箱内剩余油量Q(升)与行驶时间t(时)的函数解析式为_.4.在RtABC中,C=90°,设A= x°,B= y°,则y 关于x的解析式为_.二. 师生合作,共探新知(一)一次函数,正比例函数的一般形式1.比较下列各函数解析式,它们有哪些共同特征? 特征:(1) 等号两边的代数式都是( );(2) 自变量的次数是( )。2.定义_.3.小练下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?(1) (2) (3) 4) (5) (6)y=x 4.反思:(1)正比例函数与一次函数的联系与区别; (2)正比例函数与小学学的“两个量成正比”的联系与区别;(二)理解一次函数y=kx=b(k0)的特征 已知一次函数y=1.6x+51、 填表:X-2-101234Y2.填空:观察上表发现:当自变量x的值每增加1时,函数值y的变化规律是_,3.合作结论:一般地, 一次函数y=kx=b(k0)自变量的值每增加1时,函数值都_,这说明一次函数的函数值是随着自变量_。(三)一次函数自变量取值范围的确定 (1) 一般地, 一次函数y=kx=b(k0)自变量的取值范围是怎样的? (2) 学案开头4个函数的自变量取值范围又是怎样的?请说出来.三 生生合作,巩固新知:例1:一辆公共汽车在加油前油箱里还剩8L汽油,已知加油枪的流量为12L/min,若加油时间为x (min),) 请写出此时油箱中的油量y()与x (min)的函数关系式;) 若加油min,则油箱中有多少升汽油?例:为了圆满完成2008年奥运会火炬的传递,奥运火炬手们从珠穆朗玛峰的北坡营地出发向峰顶发起冲击。已知奥运火炬手们出发地的气温为1C,当他们向上冲击时,海拔每升高1km,气温则下降6C,(1) 你能用解析式表示他们所在位置的温度y与向上登山的高度x之间的关系吗?(2) 若火炬手们向上登高了0.2km,则他们所在位置的温度为多少?四总结反思,拓展升华:1、一次函数、正比例函数的概念及关系。2、能根据已知简单信息,写出一次函数的表达式。五当堂检测,效果评价:1.下列函数中,y是x的一次函数的是( )y=x-6;y=;y=;y=7-xA、 B、 C、 D、2 .写出下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)一边长为8(cm)的平行四边形的周长L(cm)与另一边长b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时)(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;(7)一棵树现在高50厘米,每个月长2厘米,x月后这棵树的高为y(厘米)六作业1、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数2、已知函数y=(2-m)x+2m-3.求当m为何值时, (1)此函数为一次函数? (2)此函数为正比例函数?3、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度?4. 一种移动通讯服务的收费标准为:每月基本服务费为30元,每月免费通话时间为120分,以后每分收费0.4元。(1)写出每月话费y元与通话时间x(x120)的函数关系式;(2)分别求每月通话时间为100分,200分的话费。思考题:某种气体在0时的体积为100L,温度每升高1,它的体积增加0.37L。(1)写出气体体积V(L)与温度t()之间的函数解析式;(2)求当温度为30时气体的体积。(3)当气体的体积为107.4L时,温度为多少摄氏度?学习(教学)札记学习(教学)札记更正(我为什么错了)更正(我为什么错了) 课题:14.2.2 一次函数和它的图象(2)(45课时)【学习目标】:本节课通过两个例题探索一次函数的图象及其性质,发展抽象的数学思维能用“两点法”画出一次函数的图象。结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。【学习过程】: 一、回顾交流,揭示课题【复习提问】一次函数的概念 二、范例点击,实践操作 你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看。 【例2】画出函数y=-6x,y=-6x+5,y=-6x-5的图象(在同一坐标系内) 【思考】请你比较上面三个函数的图象的相同点与不同点,填出你的观察结果:这三个函数的图象形状都是 ,并且倾斜程度 ;函数y=-6x的图象经过(0,0);函数y=-6x+5的图象与y轴交于点 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;函数y=-6x-5的图象与y轴交点是 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;比较三个函数解析式,试解释这是为什么?【猜想】联系上面例2,考虑一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系? 归纳平移法则:一次函数y=kx+b的图象是一条 ,我们称它为直线y=kx+b,它可以看作由直线y=kx平移 个单位长度而得到(当b>0时,向 平移;当b<0时,向 平移)对于一次函数y=kx+b(其中k)b为常数,k0)的图象直线,你认为有没有更为简便的方法 三、合作学习,操作观察例2 :分别画出下列函数的图像 (在练习本中完成)(1) (2) (3) (4)分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x轴,y轴的交点。(1) (2) (3) (4) 观察上面四个图像,(1)经过_象限;y随x的增大而_,函数的图像从左到右_;(2)经过_象限;y随x的增大而_,函数的图像从左到右_;(3)经过_象限;y随x的增大而_,函数的图像从左到右_;(4)经过_象限;y随x的增大而_,函数的图像从左到右_。1、由此可以得到直线中,k ,b的取值决定直线的位置:(1)直线经过_象限;(2)直线经过_象限;(3)直线经过_象限;(4)直线经过_象限;2、一次函数的性质:(1)当时,y随x的增大而_,这时函数的图像从左到右_;(2)当时,y随x的增大而_,这时函数的图像从左到右_;四、课堂总结,发展潜能 1一次函数y=kx+b图象的画法:在y轴上取(0,b)在x轴上取点(- ,0),过这两点的直线即所求图象 2一次函数y=kx+b的性质五、练习1、一次函数的图像不经过( )A、第一象限 B、第二象限 C、 第三想象限 D、 第四象限2、已知直线不经过第三象限,也不经过原点,则下列结论正确的是( )A、 B、 C、 D、3、下列函数中,y随x的增大而增大的是( )A、 B、 C、 D、4、对于一次函数,函数值y随x的增大而减小,则k的取值范围是( )A、 B、 C、 D、5、一次函数的图像一定经过( )A、(3,5) B、(-2,3) C、(2,7) D、(4、10)6、已知正比例函数的函数值y随x的增大而增大,则一次函数的图像大致是( ) 7、一次函数的图像如图所示,则k_, b_,y随x的增大而_8、一次函数的图像经过_象限, y随x的增大而_ (第6题)9、已知点(-1,a)、(2,b)在直线 上,则a,b的大小关系是_ 10、直线与x轴交点坐标为_;与y轴交点坐标_;图像经过_象限,y随x的增大而_,图像与坐标轴所围成的三角形的面积是_11、已知一次函数的图像经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数关系式_12、已知一次函数图像(1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足(1)和(2)这两个条件的函数关系式:_13y=3x与y=3x-3的图象在同一坐标系中位置关系是( )A相交 B互相垂直 C平行 D无法确定14在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( ) A、交于同一个点 B、互相平行 C、有无数个不同的交点 D、交点的个数与k的具体取值有关15函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( ) A、交于同一个点 B、互相平行 C有无数个不同的交点 D、交点个数的与b的具体取值有关课题:14.2.2 一次函数和它的图象(3)(46课时)一、【学习目标】:本节课主要探究一次函数的解析式,介绍待定系数法求一次函数解析式的方法体会二元一次方程组的实际应用二、学习过程:例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。分析:求一次函数的解析式,关键是求出k,b的值,从已知条件可以列出关于k,b的二元一次方程组,并求出k,b。解: 一次函数经过点(3,5)与(2,3)解得一次函数的解析式为_像例1这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法。练习:1、已知一次函数,当x = 5时,y = 4,(1)求这个一次函数。 (2)求当时,函数y的值。2、已知直线经过点(9,0)和点(24,20),求这条直线的函数解析式。3、已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米求这个一次函数的关系式例2:地表以下岩层的温度t()随着所处的深度h(千米)的变化而变化,t与h之间在一定范围内近似地成一次函数关系。深度(千米)246温度()901603001、根据上表,求t()