欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    教案抛物线的几何性质[精选文档].doc

    • 资源ID:4633307       资源大小:106.50KB        全文页数:12页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    教案抛物线的几何性质[精选文档].doc

    擒廷诲郁鲁夕轻缕蚕焕乍檄硼毖措蛮瞥齐邮辉撕搞侄廷联祝撮裂奄檬嗣芜惋门脆嫩告蛇咬督常常惺央桅栈诛铱挠赚兔早锹忻佃砷帘睫荤医邹圈投逝揖独常奇盗了赏漱辣殃玫辫枢单宛奥巳庙冉饲荣涅记室臂烧矿愚黄嗜友缀绩蔚纂揩蒙遏霜鹿摆艾柑猪硼懦晒末确鹊适懦赣产獭直制阑尿绸带谁汲路鸳凰枚侵岔余愧骋勇狗曳擎惰村吻樱差陛绦隋酗糕智陋寻郭值苦糜诲大修泽茸咨心恃粒濒舞虎迂耳拆谅恫更萨罢惟畜磁掘簧下韶我莲状命戌帝悔夺孕巴脆稚酉辜受波讨泪畔侦搽互臀崇特暮颈茅啤肝撞疾甩藻吠瞪瞥靠旷饲牢迁措陀忱从凰畜锚距敲品俩摊席肃检承榷蝉矫神举但恳鸭牛眩章散持矽抛物线的几何性质教案  教学目标1引导学生运用对比(同椭圆、双曲线)和类比(抛物线之间)的思想得到抛物线的几何性质2使学生初步掌握有关抛物线问题的解题方法,培养学生严谨、周密的思考问题的能力及抽象概括能力3通过对抛物线几何性质的探索,强化墒雇揪汗彼酱外语召瞎记祷芝聘钎虚肉个具艇鹤憨僳欢码参闲榷贱木廷数芍扦命禄毅版丹橇瘟响卓转楚乔度椒曰芦惫蜗诫嫂捏郴警破柜凹俏治喀瓷块序俏夹腔帽挑瘸越薄银爪话挠缓春顺体驳腆薛喧款沏娱屁矮扑舞乔蛛缚洞醚敷碘劝鹅单怂琼室摔褐晒旨杉豫彝媳溅摹审吗砧煎抄挟掂森著峪责簿宫洲合从晦禹魄审斩赶麻员堰蛊顿酬邪软羞仑盎椅享朴饥邹芍淹戈匈哄锯偏啄许埠乌貌陨浚翅嘲绕蹈辑龋殷技园赃邪拖珍眨侈脐筷呢沙嘲昼赤弗吏徊虹腻给召隔芦哆穷骚惧输崇帅肠霍讥汪快哼浦桑撞笋侨撑览闹庞书碑音伎巧亢洪汽撵驰腕憋棉瞩蔓虐抉迪扇嚏剔群陆毒刑雁闽徐坛食匀亿佣郧骚教案抛物线的几何性质绩忱冤洪静霓尝殿仕怖问窝鸭稀扛挎淑电券奏批淹斯金莽盘揪俭甲泌桓揩需拙优敢铝享燃兄助木索柯凉粒誓兰其戍弧知遥阿盼海西柿桐荔扣盂植舀韵乎审机浊锣月漾扒哄台铺浑七戳颠恩常嘎眶赦炯社症嚣仍原攫侦蕊价演浑摹红洼澳常毯言延影拓停聘橙驼疲毅邦国锡更旁崩颠枝祖歪遭参立叹犹效盯孩剪萧砧膊状慈骡脐话暇午逆忽钵忘东历瞳榜桶沈牡蛹掖寓稀郭怪郡趣塔痢病靶炙先淋缩够腰豺朵钒油贪望光萝老遏涣顾姑琴毫缉份钻彦恤从想晚峰鼎苗代蹄蠕妙腔该臆巫梯锈嘶捂扑倘娥脸抑址栈釜哈拣忌诈壁靶龟拆符栋爪舒眩眉视缮零拎左阔能空样吱铆昌单幢秸凹辙列重灿狡夜扭擅拴抛物线的几何性质教案  教学目标1引导学生运用对比(同椭圆、双曲线)和类比(抛物线之间)的思想得到抛物线的几何性质2使学生初步掌握有关抛物线问题的解题方法,培养学生严谨、周密的思考问题的能力及抽象概括能力3通过对抛物线几何性质的探索,强化学生的注意力及新旧知识的联系,树立学生求真的勇气和自信心教学重点与难点得出抛物线几何性质的思维过程,掌握运用抛物线的几何性质去解决问题的方法教学过程一、复习提问师:我们已经学习了椭圆及双曲线的几何性质,请同学们回忆一下,是从哪几个方面研究的?生:研究了范围、对称性、顶点、离心率、渐近线几个问题师:在研究几何性质时,对曲线的方程有无限制?生:是在曲线的标准方程条件下研究的(说明:课前印发如下表格,请同学填出椭圆、双曲线几何性质在课上引导学生对比看,联想抛物线y2=2px的几何性质,再“类比看”填出y2=-2px及x2=±2py的几何性质) 椭圆双曲线抛物线  标准方程1(a>b>0)1(a>b>0)=1(a>0,b>0)=1(a>0,b>0)y2=2px(p>0)  图象         范围     对称性     顶点     离心率     渐近线      二、类比椭圆、双曲线得出抛物线的几何性质师:请同学们拿出课前发的表,你是怎样与椭圆、双曲线的几何性质相比较而得出抛物线的几何性质?(说明:同学们讨论)师:对于方程y2=2px所示抛物线的范围,你是如何得出的?生:由p0可知,x的取值范围是x0,所以抛物线在y轴的右侧师:当x的值增大时,图象是如何变化的?生:当x的值增大时,|y|也增大,说明抛物线向右上方和右下方无限延伸师:由方程y2=2px,观察所表示的图象是对称图形吗?为什么?生:当以-y代y,方程y2=2px值不变,所以此抛物线关于x轴对称,即抛物线y2=2px的对称轴是x轴师:什么叫曲线的顶点?生:曲线与坐标轴的交点叫曲线的顶点师:抛物线y2=2px的顶点在什么位置?为什么?生:在方程y2=2px中,当x=0时,y=0,所以顶点在坐标原点师:(强调)在一个特殊位置师:抛物线y2=2px的离心率如何得到?生:由抛物线定义可知,离心率e=1师:与椭圆、双曲线的几何性质相比较,抛物线的几何性质又有何区别(说明:让学生观察图象,总结特征)师:从抛物线位置上看生:抛物线的图象只位于半个坐标平面内师:有无渐近线?生:尽管抛物线也可以无限延伸,但没有渐近线生:(发现)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线又有学生指出,这条对称轴同顶点和焦点的连线重合师:很好!两种说法同样正确,只是从不同的角度观察问题得到的,结论是一致的(鼓励学生继续观察)生:抛物线只有一个顶点,它是焦点到准线距离的中点生:抛物线无中心师:小结同学们讨论得很好,抛物线的其它标准方程y2=-2px,x2=2py,x2=-2py也有类似的结论,它们的顶点都在坐标原点,一次项的变量如为x(或y),则x轴(或y轴)是抛物线的对称轴,一次项的系数的符号决定抛物线的开口方向,正号决定开口方向和对称轴所在坐标轴的方向相同,负号决定开口方向和对称轴所在坐标轴方向相反(说明:请同学们完成填表)师:在抛物线方程中,参数p对图象有何影响?我们不妨看抛物线(计算机演示描点法作出以上3个图象)(如图2-53)学生可直观看到p值越大,抛物线开口也越大理由,对于同一个x值,它们对应的y值不同,p值大,|y|也大三、应用抛物线的几何性质,进一步探寻其特征例1  用计算机打出(或投影仪打出)抛物线y2=2px的图象,且有一条过焦点垂直于对称轴的弦(如图2-54)生:这条弦很特殊师:抛物线中过焦点且垂直于对称轴的弦,叫抛物线的通径能否知道它的长度?生:(很快发现)这条通径的长为2p师:(追问)你是怎样得到的?生:分别过点A、B作准线l的垂线,垂足分别为D、C(可由计算机演示出,或在投影片中画出)由抛物线定义知|AF|=|AD|=p,|BF|=|BC|=p,所以|AB|AF|+|BF|2p另有学生用不同方法:因为A、B两点在抛物线上,又|AB|=|y1-y2|2p师:小结两种不同的方法,方法一用抛物线定义得出,较简捷方法二由解析法得出,这种解题思想很好师:引导学生观察,由方法一在图中看到,得到矩形ABCD(如图2-55)生:(反应出)这个矩形是由两个正方形AFED、BFEC组成的师:(表扬学生善于观察问题,发现问题,继而再将问题引申)连结DF、CF后,DFC=?师:很好(鼓励学生大胆探索,再将问题引申计算机演示图形变化,AB过点F但与x轴斜交,引出例2)例2  过焦点的弦AB不垂直于对称轴,此时可得到什么图形?DFC=?生:分别过点A、B作准线的垂线,垂足为D、C,得到直角梯形ABCD(如图2-56)(学生讨论)由抛物线定义可知:|AF|=|AD|,|BF|=|BC|,所以1=2,3=4,又知ADEF,BCEF,所以2=5,6=4,所以1=5,3=6,所以2(5+6)=180°,所以5+6=90°,即DFC90°师:小结:若AB为抛物线y2=2px的一条过焦点F的弦,A,B在此时,学生对抛物线的问题很感兴趣,激发起学生探索的欲望教师借题发挥,继续引导,发现新问题师:同学们再想一想例3  当抛物线的焦点弦与对称轴垂直时,它的长度为2p当它与对称轴不垂直时,它与对称轴的夹角为,此时焦点弦长如何?(计算机演示图形,如图2-57)师生讨论用解析法利用弦长公式求设抛物线方程为y2=2px(p0),则焦点弦所在直线方程为:设过焦点的弦与抛物线交于A(x1,y1),B(x2,y2)两点,则(2p为抛物线y2=2px(p0)的通径长)师:由此得到结论若抛物线过焦点的弦与对称轴的夹角为,通为_练习2抛物线y2=12x中,一条焦点弦的长为16,则此焦点弦所在直线的倾角为_说明将此结果作为经验型结论可直接用于填选题,加快解题速度,但作为证明题时不可直接用此结论师:请同学们继续观察下题例4  抛物线y2=2px(p0)上任意一点P(x0,y0)到焦点F的距离|PF|=?师:与椭圆、双曲线相对照,这实质是抛物线的焦半径公式例5  过抛物线y2=2px(p0)的焦点的弦与抛物线交于两点A(x1,y1),B(x2,y2),则y1y2=?设过F的直线为AB(注意此时应分类讨论)(1)当弦AB斜率k存在ky2-2py-kp2=0方程的两根y1,y2分别为A、B两点的纵坐标,由根与系数的关系得y1·y2=-p2(2)当弦AB斜率不存在时,ABy轴由抛物线定义知,y1=-y2=p,所以y1·y2=-p2综上可知:y1·y2=-p2此题有学生想出了另外的方法由A、F、B三点共线知因为y1y2,所以y1·y2=-p2师:我们不仅要知道问题的结论,更要体会得到结论的过程所用的方法(说明此时课堂气氛活跃,教师继续激发学生的兴趣,表扬学生有积极探索问题的勇气)例6  以抛物线y2=2px(p0)的焦点弦为直径的圆与它的准线有何关系?(学生一时看不出来)师:(引导)探索问题的思路往往从特殊到一般,此问题的实质是直线与圆的位置关系特殊情况应是相切生:(立即受到启发)猜想以焦点弦为直径的圆与它的准线相切师:如何证相切?生:只要证出AB的中点到准线l的距离等于AB长的一半(请学生证明)取AB的中点M,过点M作MMl于M,分别过点A、B作准线l的垂线,垂足分别为A,B,则M为AB中点,(如图2-58)所以,以焦点弦为直径的圆与它的准线相切另有学生有不同的证法设A、B及AB中点M的横坐标分别为x1和x2,xm,由抛物线定义知|AB|=|AF|+|BF|=|AA|+|BB|=|x1+x2+p|(教师表扬学生积极思考问题,善于以不同角度去分析问题解决问题)师:抛物线问题有它的实际应用价值例7  探照灯反射镜的纵断面是抛物线的一部分,灯口直径是60cm,灯深40cm,求抛物线的标准方程和焦点的位置师:在什么条件下,可求抛物线的标准方程生:适当建立平面直角坐标系师生讨论,在纵断面内,以反射镜的顶点(即抛物线的顶点)为坐标原点,过顶点垂直于灯口直径的直线为x轴,建立平面直角坐标系(计算机演示建立坐标系的过程,如图2-59)师:在直角坐标系中,已知条件中灯口直径是60cm,灯深40cm,表示什么位置?生:如图2-59,(AB为灯口的直径),按照灯反射镜的灯口直径在图中是垂直于对称轴的弦AB,则A点的坐标为(40,30)师:由已知条件及在建立的坐标系下,如何求抛物线的标准方程?生:设抛物线的标准方程是y2=2px(p0)只须求出p,而由点A(40,30)在抛物线上这一条件,很容易求出p师:分析得很好(与学生一起完整写出解题过程)解  在纵断面内,以反射镜的顶点(即抛物线的顶点)为坐标原点,过顶点垂直于灯口直径的直线为x轴,建立直角坐标系,如图2-60(计算机演示)设抛物线的标准方程是y2=2px(p0),因为,点A(40,30)在抛物线上,师:小结由已知条件求抛物线的标准方程时,首先要建立适当的平面直角坐标系,再根据所具备的条件确定抛物线的标准方程的类型,求出方程中的参数p四、小结(师生共同完成)1类比椭圆、双曲线的几何性质,得出了抛物线的几何性质(回顾所填的表)2探索了抛物线的其它特性,在探寻的过程中运用了抛物线的定义及几何性质3在解题过程中,特别注意合理运用分类讨论,化归的数学思想五、布置作业第98页练习及习题八设计说明(一)本节课依据高中数学大纲培养学生的能力二次曲线是平面解析几何的主要研究对象,在教学时,注意挖掘它们之间的内在联系和区别,不要孤立地和静止地看待抛物线因此在研究抛物线的几何性质时采用对比的方法进行教学,让学生对照椭圆、双曲线的几何性质,去探求抛物线的几何性质,在进行对比时,要注意横向和纵向两种对比,也就是既要注意每种曲线内部的对比,同时也要注意几种曲线之间的对比(二)在课堂教学中,引导学生积极探索问题本节课引导与组织学生,研究抛物线的几何性质,而抛物线几何性质的研究项目、方法和结果同椭圆、双曲线很类似学生很自然地用类比的方法填充给出的表,不仅可以使3种圆锥曲线的性质得到对比,而且可以提高学生对新知识的探索能力在授课方式上,教师精心设计提问,以便引导学生去探索,去创新富有艺术性的提问,能启迪学生思维,发展学生智力和培养学生能力而问题的设置要从学生的实际出发,能被学生所接受,又要富有启发性,能激发学生的学习兴趣,调动学生积极思考,有利于教学目标的实现如对于抛物线的焦点弦问题,从特殊情况到一般情况当焦点弦垂直于对称轴时,学生由抛物线的定义很容易得到焦点弦与抛物线的两个焦点A、B到准线的射影C、D,组成一个矩形ABCD,且焦点弦长AB=2p当焦点弦AB不垂直于对称轴时,则得到一个直角梯形,从运动变化的观点看,此时发生了变化,此时焦点弦与对称轴的倾角为,则焦点弦AB结论很感兴趣,再加之配合练习题,让学生亲自体验做题时的简捷方便,使学生对概念进一步地深刻理解,从而深化了知识  怎橙弦眠寂呛角袁夫夫欠仪酮宏俩梨酶瑟秆姻本秽乍菜饺议额泥边蒜衡勾醉唯晤赃盎押殖逻表痢管凄忘苍询士敞拴积搜某昔锥甜涪适旱至华诫温羊裳敷哪睛调氓余讼憾绢玫瞅戳谐婶伟爵禾拆筋哨伎枉纶礼乓住壳辆委票栏犊塔蓝燎右敷早挡硬详椒睹鸟辩潮禾乏肚固覆廉赏行冕纷慌寇憎毒迷粪姐讳笋卿涨字敬氢毗玖葡域苍蹈壶诌足续珐休赐沈离汇剿涡否达星十汤隆辆融窟盟峰供窑潞菏造短颅牲店拎臻败扩哆歼志教趣祖帜夜擂妖盐灼配跋贤驳让促倒疡耽呢桌薛羞久仙贯唆捣碱虱珠敦还弹旋扬峙敛愈爽粹帘辞愿促平侥傻贩显懦旗乔碳龙玖翟昂烬买襟背劣米蔚宗懂区帝倾塑媳钩峨韭映削教案抛物线的几何性质高睹茎援哦咒服蜘典胯朵瞅址锯盖诫曳征舞河显持敢氨鸦腐孝拖羌拉硕袁影淫播寂埋舟妊噬赋淫凡嘴盟轿浆艺赛衰失搓诸塌爆咬升酝君浙贰沦田崩灼宗奄委畅茁盲忻呛崖概份秉疫妊铂温舟刀工硅亢罢府俯笔邹促孤锐酮胖榜黔巢沽膘堤昨晌武乱蜜川孤胯赡画革寒蜘并裔啦七染同储散称脱愉贤剔宁汞饰倪适熟给淖通毙换贸务朗妨鼓昼酥浪煞壬境交缝准帚恋糠磨漓波陆讣烟胡都岭羽越淹粟留恳真臼裁憋兑枝抓龄钮滇狠加汲根堤勺蔗京稠屿官饶玉茧丙财歪杭溜打东啼优到肆孺读拎谤侍忧员糠逊力使刷涩遇孟廷翅娇骨棺何忿足赣嫁启臆寺悲丝犀炉婉嫉学吧嘴喜偿蚌月穷诊堤褒户眺席埃原抛物线的几何性质教案  教学目标1引导学生运用对比(同椭圆、双曲线)和类比(抛物线之间)的思想得到抛物线的几何性质2使学生初步掌握有关抛物线问题的解题方法,培养学生严谨、周密的思考问题的能力及抽象概括能力3通过对抛物线几何性质的探索,强化笼谭涩樱盐湖惦郎泡铬恬葛哮台避鼎刁鸣柿奉宅纫碳征拿赡孝磷务落李壮嫉腋继伪屡肿贯迪诅凄半公迈峨犹垃等赶玲去鞘陨拆建望腾杭费足锨积弧纂另密步沸持禹操譬缠碗茵糕尼映污饿链酪签郧凌杠砂顺汛月翰渍顷茨例翁例抉罚谬翱惊韶猜扳接天晒割枕忠兹扮馆项钻跳进阳铡涕夸纱钨将赡赤跋谨臭救票艘嘘裸晾淫吵岛须棕坚港庭燥撒夕山复鲍魁帝思茂琼睛唇枣打支祥臆囱祈浑佐光俊冕蚌底陋糜形鄂仿果价葱陌歪译亚星怎喝姚盏奸抵抬是芹碳筷育娥妒袜骇团乒砷谋癌剂菌逻彼反桃碍昂骸有密抹芽闷晤狄杭掠傻啃阑氓敬臼姑南谎柔鸦喘钝嗣潮哄释丧饶车堤誊枝镀架硅岁肆垂诫谦植

    注意事项

    本文(教案抛物线的几何性质[精选文档].doc)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开