欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    最新八年级数学上册探索勾股定理第一课时教案汇编.doc

    • 资源ID:4629339       资源大小:58.50KB        全文页数:9页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    最新八年级数学上册探索勾股定理第一课时教案汇编.doc

    探索勾股定理 教学设计第(一)课时教学设计思想:本节内容需三课时讲授;勾股定理是反映自然界基本规律的一条重要结论.本节意图让学生自己经过观察、归纳、猜想和验证,发现勾股定理.初中学生思维活跃,求知欲强,好奇心浓,所以处理教材内容上尽量发挥学生的学习主动性.设计方格纸上计算面积,用拼图的方法验证等活动,以真正实现学生在知识、智力、能力和全面提高.为面向全体学生,进行小组合作学习,通过交流、议论、取长补短,引导学生团结协作,互帮互学,从而达到共同提高的目的.教学目标:(一)知识与技能1体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理2会利用勾股定理解释生活中的简单现象(二)过程与方法1在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想2在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力(三)情感、态度与价值观1培养学生积极参与、合作交流的意识2在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气教学重点探索和验证勾股定理教学难点在方格纸上通过计算面积的方法探索勾股定理教学方法交流探索猜想在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系教具准备学生每人课前准备若干张方格纸、投影片教学安排3课时.教学过程创设问题情境,引入新课(1)三角形按角分类,可分为_、_、_(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?(3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?师上面三个小问题是我们以前讨论过的,我们简单的回忆一下生(1)三角形按角的大小来分类可分为:直角三角形、锐角三角形、钝角三角形;(2)对于一般三角形来说,我们可以用SAS(边角边)、ASA(角边角)、AAS(角角边)、SSS(边边边)来判断两个三角形全等;而对于直角三角形来说,除以上四种方法外,还可以用HL(即有斜边和一条直角边对应相等的两个直角三角形全等)(3)两个直角三角形,有两边对应相等,有两种情况:第一种情况:两条直角边对应相等,这时,我们可注意到它们的夹角也对应相等,利用SAS可判断它们全等第二种情况:一条直角边和斜边对应相等,利用HL公理即可判断它们全等综上所述,两个直角三角形,如果有两边对应相等,则这两个直角三角形全等师我们可以注意到直角三角形有它独有的一些特征在我们学习和生活中,你是否还发现直角三角形的其他特征呢?这节课,我们就来继续研究直角三角形讲述新课1问题串师观察下图,并回答问题:(1)观察图1正方形A中含有_个小方格,即A的面积是_个单位面积;正方形B中含有_个小方格,即B的面积是_个单位面积;正方形C中含有_个小方格,即C的面积是_个单位面积(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流(3)请将上述结果填入下表,你能发现正方形A,B,C的面积关系吗?A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图1图2图3生在图1中,正方形A含1个小方格,所以它的面积是1个单位面积;正方形B含1个小方格,所以B的面积也是1个单位面积;正方形C含2个小方格,所以C的面积是2个单位面积师如何求得正方形C的面积呢?生正方形C可划分为四个直角边长都为1个单位的四个全等的等腰直角三角形,所以C的面积为4×(×1×1)=2个单位面积生我们观察可发现,这四个等腰直角三角形重新拼摆,刚好可拼摆成2个小方格,所以C的面积为2个单位面积生正方形C还可以看成边长为2个单位的正方形面积的一半,即C的面积为×22=2个单位面积师同学们能够不拘一格地积极思考问题,用多种方法去求得图1中C的面积,值得发扬广大,那么图2,图3中的A,B,C的面积是否可借鉴图1中的A,B,C的求法获得呢?请与你的同学们讨论、交流。生图2中,A含有9个小方格或者说正方形A的边长是3个单位长度,都可以求得A的面积是9个单位面积;同理可求得B含有9个小方格,所以B的面积为9个单位面积;对于正方形C来说,我们观察可发现它含有18个小方格,所以C的面积为18个单位面积师看来,同学们已能从图2中很容易地就求得了A,B,C的面积是不是在求C的面积时也和图1相类似,有多种求法呢?生是的在正方形C中,我们可以把它的边缘的12个全等的等腰直角三角形拼摆成6个小方格,再加上中间的12个小方格,正方形C共含有18个小方格,所以它的面积为18个单位面积;我们也可以把C分割成四个直角边为3个单位长度的等腰直角三角形,也可算得C的面积为4×(×32)=18个单位面积生如果把组成C的四个等腰直角三角形沿正方形的边向外翻,我们观察又可发现C在边长为6个单位长度的正方形中,并且C的面积恰好是这个正方形面积的一半即×62=18个单位面积生图3与图1,图2类似,所以我们可用同样的方法观察求得A,B,C各含4个,4个,8个小方格,面积分别为4个,4个,8个单位面积师把三个图中A,B,C的面积分别填入上面的表格中,你能发现它们的关系吗?生C的面积=A的面积+B的面积(表格略)师很好!但是A,B,C的面积为什么会有这种关系呢?我们接着观察这三个图,你能发现什么?生在前面您说过这节课我们主要研究直角三角形,而在这三个图中,都是三个正方形围着一个直角三角形师的确如此,从图中我们可以发现:三个正方形好像是“长”在直角三角形的三边上生这说明三个正方形的边长分别是以直角三角形的三边为边长得到的师那么,(3)的结论即C的面积=A的面积+B的面积与三角形有什么关系?这个关系说明什么?大家可以讨论、交流生C是斜边上的正方形,所以C的面积是斜边的平方;A,B是两直角边上的正方形,所以A,B的面积分别是这两条直角边的平方根据A,B,C的面积关系,我们不难发现:斜边的平方就等于两直角边的平方和师但是,我们也不难发现上面3个图中的直角三角形是等腰直角三角形?如果不是等腰直角三角形,而是一般的直角三角形,会不会也有这种三边关系呢?2做一做(1)观察图4,图5,并填写下表:A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图4图5你是怎样得到上面结果的?与同伴交流(2)三个正方形A,B,C的面积之间的关系?(让学生先独立思考,然后填写上面的表格最后以小组为单位充分交流各自的想法,特别是在计算斜边上的正方形的面积即正方形C的求法)师生共析根据图4,图5可填表如下:A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图416925图5二、名词解释题4C.企业业务流程重组D.划分子系统913答案 C我们先来观察图4,不难看出A,B分别含有16个小方格,9个小方格,所以A、B的面积分别为16个单位面积,9个单位面积,但斜边上的正方形C的面积的计算较为复杂,我们可用以下几种方法求得:第一种方法:将正方形C分割成4个直角边长分别为3、4全等的直角三角形和中间的一个小方格,利用计算三角形面积的公式可得正方形C的面积为4×(×3×4)+1=24+1=25个单位面积15DIC患者外周血涂片中可出现裂体细胞。( )第二种方法:直接数正方形C中含有多少个小方格,但需要适当的拼凑,在第一种方法中,我们将正方形分割成5部分,直角三角形、和一个小方格,其中直角三角形、可拼凑成一个长和宽分别为3和4的长方形,含有12个小方格,同理、也可拼凑成12个小方格,所以正方形C中共有12+12+1=25个小方格即C的面积为25个单位面积第三种方法:可将直角三角形、沿正方形C的边外翻,就得到一个边长为7个单位长度的正方形,这时正方形C的面积就为(491)÷2+1=25个单位面积图5与图4同理A062元我们从上表不难发现16+9=25,4+9=13即C的面积=A的面积+B的面积X<=800 Y=0师图4和图5中的三个正方形A,B,C也是由中间的直角三角形“长”出来的,你能从三个正方形的面积关系与直角三角形的三边联系吗?生图4中的正方形A,B,C的面积分别是直角三角形两条直角边的平方和斜边的平方,根据三个正方形的面积关系,我们不难发现,在这个直角三角形中,两条直角边的平方和等于斜边的平方由图5我们也可得出同样的结论3议一议6内皮细胞受损,启动内源性凝血途径是通过活化师我们通过对前面几个直角三角形的讨论,分析,你能归纳出直角三角形三边长度存在的关系吗?用自己的语言表达你的重大发现与同伴交流【答案】:C生在直角三角形中,两条直角边长度的平方和等于斜边的平方师这是由前面几个特例猜想出来的,是否合理呢?我们不妨作几个直角三角形检验一下例如,作一个分别以5厘米、12厘米为直角边的直角三角形,然后测量斜边的长度,通过计算看一下直角三角形三边的规律还成立吗?生1作一个直角MCN;病例3.患者男,48岁.主诉:腹痛寒战高热三天,昏迷一天。2以C为圆心,分别以5厘米、12厘米为半径画弧交CM、CN于点A,B;3连结AB住院治疗经过:给氧、物理降温、抗感染。用低分子右旋糖酐、平衡溶液、血浆、葡萄糖溶液(5、10、50)。5碳酸氢钠、氯丙嗪、异丙基肾上腺素、阿托品、氢化可的松、肝素等治疗。用刻度尺量出斜边AB的长度(强调注意测量的误差)为13厘米经检验斜边AB2=132=169,两直角边平方和AC2+BC2=52+122=25+144=169即两直角边的平方和等于斜边的平方师很好同学们不妨多作几个不同的直角三角形,用上面的方法检验直角三角形三边的关系师生共析通过特例猜想、检验,我们不难发现,直角三角形的三边的规律是成立的,这就是我们将要介绍的重点内容勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方4读一读(课本P6)古代人就对勾股定理有过深入的研究,几大文明古国都有相应的勾股定理的记载我国是最早发现勾股定理的国家之一早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角如果勾(即直角三角形中较短的直角边)等于3,股(即直角三角形中较长的直角边)等于4,那么弦(即直角三角形中的斜边)等于5,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作周髀算经中,在这本书中的另一处,还记载了勾股定理的一般形式因此,我们也把勾股定理称为商高定理,而把商高称为“勾股先师”在西方,把勾股定理又称为“毕达哥拉斯”定理相传二千多年,希腊著名数学家毕达哥拉斯学派首先证明了勾股定理,因此他们还举行了一次空前规模的庆祝活动,宰杀了一百头牲畜但因此也引发了数学的第一次危机边长为1的正方形的对角线的长度不能用整数或分数来表示关于勾股定理的记载还有很多,同学们如果有兴趣,可查阅有关这方面的资料。所以说勾股定理有着悠久的历史,它反映了古代人民的聪明才智5想一想师小明的妈妈买了一部29英寸(74厘米)的电视机小明量了电视机的荧屏后,发现荧屏只有58厘米长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?生我听爸爸说过,29英寸或74厘米的电视机,是指荧屏对角线的长度,而不是其长或宽生可是,连结荧屏的对角线将长方形的荧屏分成全等的两个直角三角形根据勾股定理,长2+宽2=742,可582+462742,这是为什么呢?生因为荧屏边框遮盖了一部分,所以实际测量存在一些误差师的确如此,但这里我们要知道一个生活常识,29英寸(74厘米)指的是荧屏的对角线的长度,而非荧屏的长或宽6例题讲解例在ABC中,C=90°(1)若a=8,b=6,则c=_;(2)若c=20,b=12,则a=_;(3)若a:b=3:4,c=10,则a=_,b=_师生共析分析:在ABC中,C=90°,所以有关系:a2+b2=c2在此关系式中,涉及到三个量,利用方程的思想,可“知二求一”解:根据题意可得a2+b2=c2(1)若a=8,b=6,所以82+62=c2即c2=100,c0,所以c=10;(2)若c=20,b=12,所以a2+122=202,即a2=202122=(20+12)(2012)=32×8=162,a0,所以a=16;(3)若a:b=3:4,可设a=3x,b=4x,所以(3x)2+(4x)2=102化简,得9x2+16x2=100,25x2=100,x2=4,x=2(x0),所以a=3x=6;b=4x=8评注:综合上述解法可以发现,形(即ABC为直角三角形)与数(a2+b2=c2)的统一,所以我们说勾股定理是形与数的结合课时小结先由学生自己总结,然后师生共同完成这节课我们主要研究:1从特例猜想出勾股定理;2用特例检验了勾股定理;3简单了解了勾股定理的历史,应用课后作业1课本P7,习题112到网上或图书室查阅关于勾股定理的资料活动与探究有一根70cm的木棒,要放在长、宽、高分别是50cm、40cm、30cm的木箱中,能放进去吗?过程:在实际生活中,往往工程设计方案比较多,应用所学的知识进行计算方可解决,而此题正是需要我们大胆实践和创新,用我们学过的勾股定理和丰富的空间想像力来解决我们可注意到木棒虽比木箱的各边都长,按各边的大小放不进去,但木箱是立体图形,可以利用空间的最长长度如AC结果:由下图可得,AA=30cm,AB=50cm,BC=40cmABC,AAC都为直角三角形由勾股定理,得AC2=AB2+BC2在RtAAC中AC最长,则AC2=AA2+AB2+BC2=302+402+502=5000702故70cm的棒能放入长、宽、高分别为50cm,40cm,30cm的大箱中板书设计§111探索勾股定理(一)特例(做一做)勾股定理特例(议一议)(直角三角形两直角边分别为a,b,斜边为c,则a2+b2=c2)

    注意事项

    本文(最新八年级数学上册探索勾股定理第一课时教案汇编.doc)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开