欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPTX文档下载  

    高考数学二轮复习第一部分方法思想解读第2讲函数与方程思想数形结合思想课件文.pptx

    • 资源ID:4622094       资源大小:1.10MB        全文页数:40页
    • 资源格式: PPTX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高考数学二轮复习第一部分方法思想解读第2讲函数与方程思想数形结合思想课件文.pptx

    -1-,思想方法诠释,思想分类应用,应用方法归纳,高考对函数与方程思想的考查频率较高,在高考的各题型中都有体现,特别在解答题中,从知识网络的交汇处,从思想方法与相关能力相结合的角度进行深入考查.,-2-,思想方法诠释,思想分类应用,应用方法归纳,应用一函数与方程思想在解三角形中的应用例1为了竖一块广告牌,要制造三角形支架,如图,要求ACB=60,BC的长度大于1 m,且AC比AB长 0.5 m,为了稳固广告牌,要求AC越短越好,则AC最短为(),答案 D,-3-,思想方法诠释,思想分类应用,应用方法归纳,-4-,思想方法诠释,思想分类应用,应用方法归纳,思维升华函数思想的实质是使用函数方法解决数学问题(不一定只是函数问题),构造函数解题是函数思想的一种主要体现;方程思想的本质是根据已知得出方程(组),通过解方程(组)解决问题.,-5-,思想方法诠释,思想分类应用,应用方法归纳,答案(1)C(2)C,-6-,思想方法诠释,思想分类应用,应用方法归纳,解析(1)由于ABC的三个内角A,B,C成等差数列,且内角和等于180,B=60.在ABD中,由余弦定理可得AD2=AB2+BD2-2ABBDcos B,即7=4+BD2-2BD,BD=3或-1(舍去),可得BC=6,-7-,思想方法诠释,思想分类应用,应用方法归纳,-8-,思想方法诠释,思想分类应用,应用方法归纳,应用二函数与方程思想在不等式中的应用例2当x-2,1时,不等式ax3-x2+4x+30恒成立,则实数a的取值范围是.,答案-6,-2,-9-,思想方法诠释,思想分类应用,应用方法归纳,-10-,思想方法诠释,思想分类应用,应用方法归纳,思维升华1.在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.2.函数f(x)0或f(x)0或f(x)max0;已知恒成立求参数范围可先分离参数,再利用函数最值求解.,-11-,思想方法诠释,思想分类应用,应用方法归纳,突破训练2设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x0,且g(-3)=0,则不等式f(x)g(x)0的解集是.,答案(-,-3)(0,3),-12-,思想方法诠释,思想分类应用,应用方法归纳,解析 设F(x)=f(x)g(x),由于f(x),g(x)分别是定义在R上的奇函数和偶函数,得F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),即F(x)在R上为奇函数.又当x0,所以当x0时,F(x)也是增函数.可知F(x)的大致图象如图.因为F(-3)=f(-3)g(-3)=0=-F(3),所以,由图可知F(x)0的解集是(-,-3)(0,3).,-13-,思想方法诠释,思想分类应用,应用方法归纳,函数与方程思想在数列中的应用例3已知公差不为0的等差数列an的前n项和为Sn,S7=70,且a1,a2,a6成等比数列.(1)求数列an的通项公式;(2)设,数列bn的最小项是第几项,并求出该项的值.,-14-,思想方法诠释,思想分类应用,应用方法归纳,-15-,思想方法诠释,思想分类应用,应用方法归纳,思维升华因为数列是自变量为正整数的函数,所以根据题目条件构造函数关系,把不等式恒成立问题转化为求函数的最值问题是常用的解题思路.,-16-,思想方法诠释,思想分类应用,应用方法归纳,答案 C,-17-,思想方法诠释,思想分类应用,应用方法归纳,函数思想在解题中的应用主要表现在两个方面:(1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;(2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到化难为易、化繁为简的目的.,-18-,思想方法诠释,思想分类应用,应用方法归纳,数形结合思想是解答高考数学试题的一种常用方法与技巧,在高考试题中,数形结合思想主要用于解选择题和填空题,有直观、简单、快捷等特点;而在解答题中,考虑到推理论证的严密性,图形只是辅助手段,最终要用“数”写出完整的解答过程.,-19-,思想方法诠释,思想分类应用,应用方法归纳,应用一利用数形结合求与方程根有关的问题例1若实数a满足a+lg a=4,实数b满足b+10b=4,函数 则关于x的方程f(x)=x的根的个数是()A.1B.2C.3D.4,答案 C,-20-,思想方法诠释,思想分类应用,应用方法归纳,解析 在同一平面直角坐标系中作出y=10 x,y=lg x以及y=4-x的图象,其中y=10 x,y=lg x的图象关于直线y=x对称,直线y=x与y=4-x的交点为(2,2),所以a+b=4,当x0时,由x2+4x+2=x易知x=-1或-2;当x0时,易知x=2,所以方程f(x)=x的根的个数是3.,-21-,思想方法诠释,思想分类应用,应用方法归纳,思维升华讨论方程的解(或函数的零点)的个数一般可构造两个函数,转化为讨论两曲线(或曲线与直线等)的交点个数,其基本步骤是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),再在同一平面直角坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数.,-22-,思想方法诠释,思想分类应用,应用方法归纳,突破训练1定义在R上的奇函数f(x)满足f(x+2)=f(2-x),当x0,2时,f(x)=-4x2+8x.若在区间a,b上,存在m(m3)个不同整数xi(i=1,2,m),满足,则b-a的最小值为()A.15B.16C.17D.18,答案 D,-23-,思想方法诠释,思想分类应用,应用方法归纳,解析 由题意得f(x+2+2)=f(2-x-2)=f(-x)=-f(x),即f(x+4)=-f(x),则f(x+8)=-f(x+4)=f(x).f(x)的周期为8,函数f(x)的图形如下.f(-1)=-4,f(0)=0,f(1)=4,f(2)=0,f(3)=4,f(4)=0,|f(-1)-f(0)|=4,|f(0)-f(1)|=4,|f(1)-f(2)|=4,|f(2)-f(3)|=4,由,则b-a的最小值为18,故选D.,-24-,思想方法诠释,思想分类应用,应用方法归纳,应用二利用数形结合求参数范围及解不等式,答案 B,-25-,思想方法诠释,思想分类应用,应用方法归纳,解析 先作出函数f(x)=log2(1-x)+1,-1xk的大致图象,再研究f(x)=x3-3x+2,kxa的大致图象.,当kxa时,令f(x)=3x2-3=0,得x=1.当x1时,f(x)0;当-1x1时,f(x)0,-26-,思想方法诠释,思想分类应用,应用方法归纳,思维升华在解含有参数的不等式时,由于涉及参数,往往需要讨论,导致演算过程烦琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会简练地得到解决.,-27-,思想方法诠释,思想分类应用,应用方法归纳,突破训练2(1)已知偶函数f(x)在0,+)内单调递减,f(2)=0.若f(x-1)0,则x的取值范围是.(2)(2018全国,文14)若x,y满足约束条件 则z=x+y的最大值为.,答案(1)(-1,3)(2)9,-28-,思想方法诠释,思想分类应用,应用方法归纳,解析(1)作出函数f(x)的大致图象如图所示.因为f(x-1)0,所以-2x-12,解得-1x3.则x的取值范围为(-1,3).(2)由题意,作出可行域如图阴影部分所示.要使z=x+y取得最大值,平移直线y=-x,当且仅当直线过点(5,4)时,zmax=9.,-29-,思想方法诠释,思想分类应用,应用方法归纳,应用三数形结合在两函数图象交点上的应用例3函数f(x)=2sinx-,x-2,4的所有零点之和为()A.2B.4C.6D.8,答案 D,-30-,思想方法诠释,思想分类应用,应用方法归纳,-31-,思想方法诠释,思想分类应用,应用方法归纳,-32-,思想方法诠释,思想分类应用,应用方法归纳,思维升华由于两个函数其中有一个是抽象函数,因而无法求出它们的具体的交点,所以在求其交点横坐标之和或纵坐标之和或者交点横纵坐标之和时,常利用数形结合思想,根据两函数图象的对称性求其和.,-33-,思想方法诠释,思想分类应用,应用方法归纳,答案 D,-34-,思想方法诠释,思想分类应用,应用方法归纳,-35-,思想方法诠释,思想分类应用,应用方法归纳,-36-,思想方法诠释,思想分类应用,应用方法归纳,应用三数形结合在解析几何中的应用例4已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m0).若圆C上存在点P,使得APB=90,则实数m的最大值为()A.7B.6C.5D.4,答案 B,-37-,思想方法诠释,思想分类应用,应用方法归纳,思维升华1.如果等式、代数式的结构蕴含着明显的几何特征,那么就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的有:,2.解析几何中的一些范围及最值问题,常结合几何图形的性质,使问题得到解决.,-38-,思想方法诠释,思想分类应用,应用方法归纳,突破训练4如图,过抛物线y2=2px(p0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为(),答案 D,-39-,思想方法诠释,思想分类应用,应用方法归纳,解析 由题意,过点A,B分别作准线的垂线,垂足为A,B,如图所示.,-40-,思想方法诠释,思想分类应用,应用方法归纳,方程思想在解题中的应用主要表现在四个方面:(1)解方程或解不等式;(2)含参数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识的应用;(3)需要转化为方程的讨论,如曲线的位置关系等;(4)构造方程或不等式求解问题.,

    注意事项

    本文(高考数学二轮复习第一部分方法思想解读第2讲函数与方程思想数形结合思想课件文.pptx)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开