最新高中数学必修1知识点总结01集合与函数的概念汇编.docx
-
资源ID:4621788
资源大小:238.82KB
全文页数:11页
- 资源格式: DOCX
下载积分:10金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
最新高中数学必修1知识点总结01集合与函数的概念汇编.docx
高中数学必修1知识点总结01集合与函数的概念【编者按】集合语言是现代数学的基本语言,它可以简洁、准确地表达数学内容;函数是描述客观世界变化规律的重要数学模型,函数思想贯穿了高中数学课程的始终,函数与代数式、方程、不等式等内容联系非常密切;函数概念及其反映出的数学思想方法已经渗透到数学的各个领域,是进一步学习数学的重要基础。教材要求:了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;理解函数的概念、表示方法及其基本性质;在解决实际问题的过程中感受函数的思想方法。一、集合课标要求:1集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。要点精讲:1集合:一般地,把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set),简称集。(1)集合中的对象称元素,若a是集合A的元素,记作aA;若b不是集合A的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。2集合的包含关系:简单性质:1);2);3)若,则;4)若集合A是n个元素的集合,则集合A有2n个子集(其中所有真子集的个数是2n1,所有非空真子集的个数是);3交集、并集与补集:注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。4集合的简单性质:附注:学习集合表示方法时应注意的问题(1)注意a与a的区别;a是集合a的一个元素,而a是含有一个元素a的集合,二者的关系是aa;(2)注意与0的区别是不含任何元素的集合,而0是含有元素的集合(3)在用列举法表示集合时,一定不能犯用实数集或R来表示实数集R这一类错误,因为这里“大括号”已包含了“所有”的意思用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,它应具备哪些特征性质,从而准确地理解集合的意义例如:集合中的元素是(x,y),这个集合表示二元方程的解集,或者理解为曲线上的点组成的点集;集合中的元素是x,这个集合表示函数中自变量x的取值范围;集合中的元素是y,这个集合表示函数中函数值y的取值范围;集合中的元素只有一个(方程),它是用列举法表示的单元素集合。二、函数概念与表示课标要求:1通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念;2在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3通过具体实例,了解简单的分段函数,并能简单应用;4通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义;5学会运用函数图象理解和研究函数的性质。要点精讲:1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数。记作:y=f(x),xA。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域。注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。2构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。配方法(将函数转化为二次函数);判别式法(将函数转化为二次方程);不等式法(运用不等式的各种性质);函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。3两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。4区间5映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”。函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的其中f表示具体的对应法则,可以用汉字叙述。(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。6常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。7分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;8复合函数若y=f(u),u=g(x),xÎ(a,b),uÎ(m,n),那么y=fg(x)称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。附注:1求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知f(x)求fg(x)或已知fg(x)求f(x):换元法、配凑法;(3)已知函数图像,求函数解析式;(4)f(x)满足某个等式,这个等式除f(x)外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等。2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知f(x)的定义域求fg(x)的定义域或已知fg(x)的定义域求f(x)的定义域:掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;若已知f(x)的定义域a,b,其复合函数fg(x)的定义域应由ag(x)b解出。3求函数值域的各种方法函数的值域是由其对应法则和定义域共同决定的。其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域。直接法:利用常见函数的值域来求一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数f(x)=ax2+bx+c(a0)的定义域为R,当a>0时,值域为;当a<0时,值域为。配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:f(x)=ax2+bx+c,x(a,b)的形式;分式转化法(或改为“分离常数法”)换元法:通过变量代换转化为能求值域的函数,化归思想;三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;基本不等式法:转化成型如:,利用平均值不等式公式来求值域;单调性法:函数为单调函数,可根据函数的单调性求值域。数形结合:根据函数的几何图形,利用数型结合的方法来求值域。三、函数的基本性质课标要求:1通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;2结合具体函数,了解奇偶性的含义;要点精讲:1 函数的单调性注意:(1)利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2D,且x1<x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)。(2)在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数2最值(1)定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x)M;存在x0I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x)M;存在x0I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。注意: 函数最大(小)首先应该是某一个函数值,即存在x0I,使得f(x0) = M; 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的xI,都有f(x)M(f(x)M)。(2)利用函数单调性的判断函数的最大(小)值的方法: 利用二次函数的性质(配方法)求函数的最大(小)值; 利用图象求函数的最大(小)值; 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);(3)函数的图象与性质f(x)分别在、上为增函数,分别在、上为减函数。2 奇偶性注意:(1) 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f(x)与f(x)的关系; 作出相应结论:5异型输血可引起红细胞的大量破坏并释放ADP促使DIC的发生。( )若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数。(3)简单性质:图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;甲公司20X4年度实现盈利,按照净利润的10提取法定盈余公积。设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:18急性胰腺炎病人可发生弥散性血管内凝血。( )奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇D1 1115万元4周期性A主要现金流入是否独立于其他资产或资产组是认定资产组的依据(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)= f(x),则称f(x)为周期函数;E当企业难以估计某单项资产的可收回金额时,应当以其所属资产组为基础确定资产组的可收回金额(2)性质:f(x+T)= f(x)常常写作若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;若周期函数f(x)的周期为T,则f(x)(0)是周期函数,且周期为。13() FDP中,X、Y、D片段均可妨碍纤维蛋白单体聚合。Y、E片段有抗凝血酶作用。多数碎片可与血小板膜结合,降低血小板的黏附、聚集、释放等功能。此外,其还可增加血管通透性。附注:1判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:;C纤维蛋白原定量检查凝血物质消耗情况2对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称这是函数具备奇偶性的必要条件。稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立函数的奇偶性是其相应图象的特殊的对称性的反映;A首先治疗DIC,然后处理原发病3若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;(6)12月31目,因合同违约被诉案件尚未判决,经咨询法律顾问后,甲公司认为很可能赔偿的金额为800万元。20X 1年2月5日,经法院判决,甲公司应支付赔偿金500万元。当事人双方均不再上诉。甲公司会计处理:20×0年末,确认预计负债和营业外支出800万元; 法院判决后未调整20×0年度财务报表。假定甲公司20×0年度财务报表于20×1年3月31日。本题不考虑增值税、所得税及其他因素。4奇函数的图象关于原点对称,偶函数的图象关于y轴对称,因此根据图象的对称性可以判断函数的奇偶性。5若存在常数T,使得f(x+T)=f(x)对f(x)定义域内任意x恒成立,则称T为函数f(x)的周期,一般所说的周期是指函数的最小正周期周期函数的定义域一定是无限集。(参考教材:人教版必修1A版)