最新:抗菌药物与细菌耐药性 中山大学 微生物学文档资料.ppt
抗菌药物 抗菌药物的抗菌类型及抗菌机理细菌的耐药性细菌的耐药机理细菌耐药性的控制策略,抗菌药物,Antibiotics(抗生素),其他抗菌物Bacteriophage(噬菌体)Bacteriocin(细菌素)Lysozyme(溶菌酶),Antibiotics(抗生素),Antibiotics(抗生素)由真菌、放线菌或细菌自然代谢产生的可杀死或抑制微生物生长的物质 Synthetic antibiotics(合成抗生素)在实验室中,通过化学合成生产的可杀死或抑制微生物生长的物质,Discovery,Penicillin the first natural antibiotics produced by Penicillium notatm identified by Alexander Fleming in 1928,Alexander Flemming,Acquired Noble prize in 1945,Pencillin was purified and tested in mice showing its therapeutic action against lethal bacteria infection in 1935 by Howard Florey and Emst Chain Alexander Flemming Howard Florey acquired Noble prize in 1945 Emst Chain,Streptomycin was identified by Selman Waksman in 1944 acquired Noble prize in 1952 Large-scale production of Penicillin by U.S pharmaceutical companies in early 1940s,Hundreds and thousands of live of infected soldiers were saved by the end of W.W.II Screening and discoveries of many other kinds of antibiotics in 1950s and 1960s Microbes began developing resistance against the wonder drugs,抗生素的种类,Penicillins(青霉素类)-lactams Cephalosporins(头孢菌素类)Aminoglycosides(氨基糖甙类)Tetracyclins(四环素类)Macrolides(大环内酯类)Polymyxins(多粘菌素类)Quinolones(喹诺酮类)Rifamycins(利福霉素类)Sulphonamides(磺胺类),-lactams(-内酰胺类),-lactams(-内酰胺类),Penicillins 青霉素类 penicillin G(青霉素G)ampicillin(氨苄西林)amoxicillin(阿莫西林)Cephalosporins 头孢菌素类 cefalothin 头孢噻吩,先锋I(第一代)cefotiam 头孢替安(第二代)cefotetan 头孢他定,复达欣(第三代),Aminoglycosides(氨基糖甙类),Streptomycin(链霉素)Gentamicin(庆大霉素)Kanamycin(卡那霉素)Amikacin(丁胺卡那霉素,阿米卡星)Tobramycin(妥布霉素),Tetracyclins 四环素类,Tetracycline(四环素)Terramycin(土霉素)Doxycycline(强力霉素),Macrolides(大环内酯类),Erythromycin(红霉素)Midecamycin(麦迪霉素)Acetylspiramycin(乙酰螺旋霉素),Polymyxins(多粘菌素类),Polymixin B Polymixin E,Quinolones(喹诺酮类),Norfloxaxin 诺氟沙星(氟哌酸)Ciprofloxacin 环丙沙星 Ofloxacin 氧氟沙星(氟嗪酸),Other antibiotics,Vacomycin(万古霉素)“trump card”Lincomyxin(林可霉素)Clindamycin(克林霉素),抗生素抗菌机理,1抑制细菌细胞壁的合成,-lactams(-内酰胺类)Vancomycin Cycloserine(环丝氨酸),-lactams(-内酰胺类),青霉素在细菌细胞壁上的作用靶点:penicillin-binding protein(PBPs)transpeptidase(转肽酶)transglycanase(转糖基酶),Peptide cross-bridges,(target site for penicillin),Vancomycin,与肽聚糖骨架前体上的D-丙氨酸结合,从而阻止肽聚糖骨架的交联,一种D-丙氨酸类似物 阻断D-丙氨酸参与多肽交联桥的合成,Cycloserine(环丝氨酸),环丝氨酸万古霉素,2.影响细胞膜的功能,Polymycin A、B、C、D、E(多粘菌素),Amphotericin B(两性霉素B)Binding to a sterol(固醇)Anti-fungi,3.抑制蛋白质的合成,Aminoglycosides(氨基糖酐类)Tetracyclines(四环素类),与细菌核糖体30S小亚基结合,抑制细菌蛋白质的合成,与细菌核糖体50S亚基结合,阻止蛋白质合成肽链延长,Chloramphenicol(氯霉素)Erythromycin(红霉素),4.抑制细菌核酸合成,与细菌RNA多聚酶结合,阻止其mRNA转录 结构与对氨苯甲酸(PABA)类似,可竞争二氢叶酸酶,阻碍二氢叶酸合成,从而影响核酸合成,Rifampin(利福平),磺胺类,细菌的耐药性,严重的世界性问题,1928.penicillin was discovered by Alexander Fleming 1941.Penicillin was used in treating bacterial infections 1944.Penicillin resistant Staphylococcus 1946.14%1947.38%1966.90%1959.Beecham and Bristol brought out methicillin,1961.methicillin-resistant Staphylococcus aureus(MRSA)was first detected in Britain 1987.Vaconmycin resistant enterobacteria(VRE)1997.Vaconmycin dependent enterobacteria(VDE)2002.Vaconmycin resistant Staphylococcus aureus(VRSA),the most important antibiotics resistant bacteria,Staphylococcus 金黄色葡萄球菌 Tubercle bacillus 结核杆菌 Haemophilus influenza 流感嗜血杆菌 Enterococcus 肠球菌 P.aeruginosa 铜绿假单胞菌 E.coli 大肠杆菌 P.klebsiclla 肺炎克雷伯菌,细菌耐药机理,1.产生修饰酶,1)-lactamases(-内酰胺酶)破坏-内酰胺环,Penicillinase(青霉素酶)Cephalosporinase(头孢菌素酶)Extended spectrum lactamases(广谱-内酰胺酶),2)Aminoglycoside-modified enzymes(氨基糖甙类抗生素的钝化酶)Acethl transferase 乙酰转移酶-NH2 Phospho transferase 磷酸转移酶-OH Adenyl transferase 核苷转移酶-OH,3)Chloramphenicol acetyl transferase(CAT)(氯霉素乙酰转移酶)Encoded by plasmid Change the structure of chloramphenicol Blocking the binding of 50S ribosome,2.改变作用靶点或受体靶点,改变细胞膜上青霉素结合蛋白 PBP2 PBP2a PBP2a使青霉素结合量减少,Altered target(靶点改变),Target AntibioticsPBPs-lactams DNA gyrase QuinoloneRNA polymerase Rifompin50S subunit Erythromycin30S subunit Streptomycin,3.阻止抗生素进入,改变外膜蛋白(OMP)减少抗生素的渗入主动排出 在细胞膜上合成反向泵系统 reverse-pumping system 主动派出抗生素,细菌耐药性的遗传基础,细菌耐药性的遗传特点,Intrinsic resistance(固有耐药性,天然耐药性)Chromosomal mutation Acquired resistance(染色体介导)(获得性耐药性)Plasmid-mediated resistance(质粒介导),1.染色体介导的细菌耐药特点,altered drug targets 基因突变 decreased permeability-Lactamase 生长缓慢 Frequency rate 10-12 10-7 unable to compete with wild types 临床相对少见,2.质粒/转座子介导的细菌耐药特点,Transformation(转化)Transduction(转导)Conjugation(接合),有基因转移转移效率高(通常通过接合方式)转移至同种或异种细菌常涉及多重耐药性转移导致严重的临床问题常见转移的耐药基因有-lactamases acetyl-transferrase adenine methylase reverse-pumping system heavy metal resistance,耐药质粒在细菌间的传播,转化 转导 接合 细菌种属 G(+)菌 葡萄球菌 G(-)菌转移片段 极小 极小 大转移条件 受体菌呈 噬菌体与宿主 性菌毛 感受态 有种特异性临床重要性 小 小 大,3.整合子与多重耐药,可捕获外源基因同一整合子可携带不同耐药基因盒同一耐药基因盒可在不同整合子上,细菌耐药性的控制策略,合理使用抗生素严格执行消毒隔离制度加强药政管理研发新型抗生素破坏耐药基因,Thank you!,