欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    人工神经网络ANNPPT文档资料.ppt

    • 资源ID:4605590       资源大小:847.50KB        全文页数:68页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人工神经网络ANNPPT文档资料.ppt

    30/04/2023,Artificial Neural Networks-I,1,Table of Contents,Introduction to ANNsTaxonomyFeaturesLearningApplications,I,30/04/2023,Artificial Neural Networks-I,2,Contents-I,Introduction to ANNsProcessing elements(neurons)ArchitectureFunctional Taxonomy of ANNsStructural Taxonomy of ANNsFeaturesLearning ParadigmsApplications,30/04/2023,Artificial Neural Networks-I,3,The Biological Neuron,10 billion neurons in human brainSummation of input stimuliSpatial(signals)Temporal(pulses)Threshold over composed inputsConstant firing strength,billion synapses in human brainChemical transmission and modulation of signalsInhibitory synapsesExcitatory synapses,30/04/2023,Artificial Neural Networks-I,4,Biological Neural Networks,10,000 synapses per neuronComputational power=connectivityPlasticity new connections(?)strength of connections modified,30/04/2023,Artificial Neural Networks-I,5,Neural Dynamics,Refractory time,Action potential,Action potential 100mVActivation threshold 20-30mVRest potential-65mVSpike time 1-2msRefractory time 10-20ms,30/04/2023,Artificial Neural Networks-I,6,神经网络的复杂性,神经网路的复杂多样,不仅在于神经元和突触的数量大、组合方式复杂和联系广泛,还在于突触传递的机制复杂。现在已经发现和阐明的突触传递机制有:突触后兴奋,突触后抑制,突触前抑制,突触前兴奋,以及“远程”抑制等等。在突触传递机制中,释放神经递质是实现突触传递机能的中心环节,而不同的神经递质有着不同的作用性质和特点,30/04/2023,Artificial Neural Networks-I,7,神经网络的研究,神经系统活动,不论是感觉、运动,还是脑的高级功能(如学习、记忆、情绪等)都有整体上的表现,面对这种表现的神经基础和机理的分析不可避免地会涉及各种层次。这些不同层次的研究互相启示,互相推动。在低层次(细胞、分子水平)上的工作为较高层次的观察提供分析的基础,而较高层次的观察又有助于引导低层次工作的方向和体现其功能意义。既有物理的、化学的、生理的、心理的分门别类研究,又有综合研究。,30/04/2023,Artificial Neural Networks-I,8,The Artificial Neuron,Stimulus,urest=resting potentialxj(t)=output of neuron j at time twij=connection strength between neuron i and neuron ju(t)=total stimulus at time t,yi(t),x1(t),x2(t),x5(t),x3(t),x4(t),wi1,wi3,wi2,wi4,wi5,Neuron i,Response,30/04/2023,Artificial Neural Networks-I,9,Artificial Neural Models,McCulloch Pitts-type Neurons(static)Digital neurons:activation state interpretation(snapshot of the system each time a unit fires)Analog neurons:firing rate interpretation(activation of units equal to firing rate)Activation of neurons encodes informationSpiking Neurons(dynamic)Firing pattern interpretation(spike trains of units)Timing of spike trains encodes information(time to first spike,phase of signal,correlation and synchronicity,30/04/2023,Artificial Neural Networks-I,10,Binary Neurons,“Hard”threshold,=threshold,ex:Perceptrons,Hopfield NNs,Boltzmann MachinesMain drawbacks:can only map binary functions,biologically implausible.,off,on,Stimulus,Response,30/04/2023,Artificial Neural Networks-I,11,Analog Neurons,“Soft”threshold,ex:MLPs,Recurrent NNs,RBF NNs.Main drawbacks:difficult to process time patterns,biologically implausible.,off,on,Stimulus,Response,30/04/2023,Artificial Neural Networks-I,12,Spiking Neurons,=spike and afterspike potentialurest=resting potentiale(t,u(t)=trace at time t of input at time t=thresholdxj(t)=output of neuron j at time twij=efficacy of synapse from neuron i to neuron ju(t)=input stimulus at time t,Response,Stimulus,30/04/2023,Artificial Neural Networks-I,13,Spiking Neuron Dynamics,30/04/2023,Artificial Neural Networks-I,14,赫布律,加拿大心理学家Donald Hebb出版了行为的组织一书,指出学习导致突触的联系强度和传递效能的提高,即为“赫布律”。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。,30/04/2023,Artificial Neural Networks-I,15,Hebbs Postulate of Learning,Biological formulation When an axon of cell A is near enough to excite a cell and repeatedly or persistently takes part in firing it,some growth process or metabolic change takes place in one or both cells such that As efficiency as one of the cells firing B is increased.,30/04/2023,Artificial Neural Networks-I,16,赫布律,当细胞A的一个轴突和细胞B 很近,足以对它产生影响,并且持久地、不断地参与了对细胞B 的兴奋,那么在这两个细胞或其中之一会发生某种生长过程或新陈代谢变化,以致于A作为能使B 兴奋的细胞之一,它的影响加强了。,30/04/2023,Artificial Neural Networks-I,17,Hebbs Postulate:revisited,Stent(1973),and Changeux and Danchin(1976)have expanded Hebbs rule such that it also mo-dels inhibitory synapses:If two neurons on either side of a synapse are activated simultaneously(synchronously),then the strength of that synapse is selectively increased.If two neurons on either side of a synapse are activated asynchronously,then that synapse is selectively weakened or eliminated.,30/04/2023,Artificial Neural Networks-I,18,Artificial Neural Networks,Output layer,Input layer,Hidden layers,fully connected,sparsely connected,30/04/2023,Artificial Neural Networks-I,19,Feedforward ANN Architectures,Information flow unidirectionalStatic mapping:y=f(x)Multi-Layer Perceptron(MLP)Radial Basis Function(RBF)Kohonen Self-Organising Map(SOM),30/04/2023,Artificial Neural Networks-I,20,Recurrent ANN Architectures,Feedback connectionsDynamic memory:y(t+1)=f(x(),y(),s()(t,t-1,.)Jordan/Elman ANNsHopfield Adaptive Resonance Theory(ART),30/04/2023,Artificial Neural Networks-I,21,History,Early stages1943 McCulloch-Pitts:neuron as comp.elem.1948 Wiener:cybernatics1949 Hebb:learning rule1958 Rosenblatt:perceptron1960 Widrow-Hoff:least mean square algorithmRecession1969 Minsky-Papert:limitations perceptron modelRevival1982 Hopfield:recurrent network model1982 Kohonen:self-organizing maps1986 Rumelhart et.al.:backpropagation,30/04/2023,Artificial Neural Networks-I,22,历史,40年代心理学家Mcculloch和数学家Pitts合作提出的兴奋与抑制型神经元模型和Hebb提出的神经元连接强度的修改规则,他们的研究结果至今仍是许多神经网络模型研究的基础。50年代、60年代的代表性工作是Rosenblatt的感知机和Widrow的自适应性元件Adaline。1969年,Minsky和Papert合作发表了颇有影响的Perceptron一书,得出了消极悲观的论点,加上数字计算机正处于全盛时期并在人工智能领域取得显著成就,70年代人工神经网络的研究处于低潮。,30/04/2023,Artificial Neural Networks-I,23,历史,80年代后,传统的Von Neumann数字计算机在模拟视听觉的人工智能方面遇到了物理上不可逾越的极限。与此同时,Rumelhart与Mcclelland以及Hopfield等人在神经网络领域取得了突破性进展,神经网络的热潮再次掀起。自适应共振理论(ART)组织特征映射理论Hinton 等人最近提出了 Helmboltz 机 徐雷提出的 Ying-Yang 机理论模型 甘利俊一(S.Amari)开创和发展的基于统计流形的方法应用于人工神经网络的研究,30/04/2023,Artificial Neural Networks-I,24,ANN Capabilities,LearningApproximate reasoningGeneralisation capabilityNoise filteringParallel processingDistributed knowledge baseFault tolerance,30/04/2023,Artificial Neural Networks-I,25,Main Problems with ANN,Knowledge base not transparent(black box)(Partially resolved)Learning sometimes difficult/slowLimited storage capability,30/04/2023,Artificial Neural Networks-I,26,ANN Learning Paradigms,Supervised learningClassificationControlFunction approximationAssociative memoryUnsupervised learningClusteringReinforcement learningControl,30/04/2023,Artificial Neural Networks-I,27,Supervised Learning,Teacher presents ANN input-output pairsANN weights adjusted according to errorIterative algorithms(e.g.Delta rule,BP rule)One-shot learning(Hopfield)Quality of training examples is critical,30/04/2023,Artificial Neural Networks-I,28,Presented by Martin Ho,Eddy Li,Eric Wong and Kitty Wong-Copyright 2000,Linear Separability in Perceptrons,30/04/2023,Artificial Neural Networks-I,29,Presented by Martin Ho,Eddy Li,Eric Wong and Kitty Wong-Copyright 2000,Learning Linearly Separable Functions(1),What can these functions learn?Bad news:-There are not many linearly separable functions.Good news:-There is a perceptron algorithm that will learn any linearly separable function,given enough training examples.,30/04/2023,Artificial Neural Networks-I,30,Delta Rule,a.k.a.Least Mean SquaresWidrow-Hoff iterative delta rule(1960)Gradient descent of the error surfaceGuaranteed to find minimum error configuration in single layer ANNsStochastic approximation of desired behaviour,30/04/2023,Artificial Neural Networks-I,31,Unsupervised Learning,ANN adapts weights to cluster input dataHebbian learningConnection stimulus-response strengthened(hebbian)Competitive learning algorithms Kohonen&ARTInput weights adjusted to resemble stimulus,30/04/2023,Artificial Neural Networks-I,32,Hebbian Learning,Hebb postulate(1948)Correlation-based learningConnections between concurrently firing neurons are strengthenedExperimentally verified(1973),l=learning coefficientwij=connection from neuron xj to yi,General Formulation,Hebb postulate,Kohonen&Grossberg(ART),30/04/2023,Artificial Neural Networks-I,33,Learning principle for artificial neural networks,ENERGY MINIMIZATIONWe need an appropriate definition of energy for artificial neural networks,and having that we can use mathematical optimisation techniques to find how to change the weights of the synaptic connections between neurons.ENERGY=measure of task performance error,30/04/2023,Artificial Neural Networks-I,34,Neural network mathematics,Inputs,Output,30/04/2023,Artificial Neural Networks-I,35,Neural network mathematics,Neural network:input/output transformation,W is the matrix of all weight vectors.,30/04/2023,Artificial Neural Networks-I,36,MLP neural networks,MLP=multi-layer perceptronPerceptron:MLP neural network:,30/04/2023,Artificial Neural Networks-I,37,RBF neural networks,RBF=radial basis function,Example:,Gaussian RBF,x,yout,30/04/2023,Artificial Neural Networks-I,38,Neural network tasks,control classification prediction approximation,These can be reformulated in general as FUNCTION APPROXIMATION tasks.,Approximation:given a set of values of a function g(x)build a neural network that approximates the g(x)values for any input x.,30/04/2023,Artificial Neural Networks-I,39,Neural network approximation,Task specification:Data:set of value pairs:(xt,yt),yt=g(xt)+zt;zt is random measurement noise.Objective:find a neural network that represents the input/output transformation(a function)F(x,W)such thatF(x,W)approximates g(x)for every x,30/04/2023,Artificial Neural Networks-I,40,Learning to approximate,c is the learning parameter(usually a constant),30/04/2023,Artificial Neural Networks-I,41,Learning with a perceptron,Perceptron:,Data:,Error:,Learning:,A perceptron is able to learn a linear function.,30/04/2023,Artificial Neural Networks-I,42,Learning with RBF neural networks,Only the synaptic weights of the output neuron are modified.An RBF neural network learns a nonlinear function.,30/04/2023,Artificial Neural Networks-I,43,Learning with MLP neural networks,MLP neural network:with p layers,Data:,Error:,x,yout,1 2 p-1 p,30/04/2023,Artificial Neural Networks-I,44,Learning with backpropagation,Learning:Apply the chain rule for differentiation:calculate first the changes for the synaptic weights of the output neuron;calculate the changes backward starting from layer p-1,and propagate backward the local error terms.,The method is still relatively complicated but it is much simpler than the original optimisation problem.,30/04/2023,Artificial Neural Networks-I,45,Learning with general optimization,In general it is enough to have a single layer of nonlinear neurons in a neural network in order to learn to approximate a nonlinear function.In such case general optimisation may be applied without too much difficulty.,Example:an MLP neural network with a single hidden layer:,30/04/2023,Artificial Neural Networks-I,46,Learning with general optimization,30/04/2023,Artificial Neural Networks-I,47,New methods for learning with neural networks,Bayesian learning:the distribution of the neural network parameters is learntSupport vector learning:the minimal representative subset of the available data is used to calculate the synaptic weights of the neurons,30/04/2023,Artificial Neural Networks-I,48,Reinforcement Learning,Sequential tasksDesired action may not be knownCritic evaluation of ANN behaviourWeights adjusted according to criticMay require credit assignmentPopulation-based learningEvolutionary AlgorithmsSwarming TechniquesImmune Networks,30/04/2023,Artificial Neural Networks-I,49,ANN Summary,30/04/2023,Artificial Neural Networks-I,50,神经网络的集成,1996年,Sollich和Krogh 将神经网络集成定义为:“神经网络集成是用有限个神经网络对同一个问题进行学习,集成在某输入示例下的输出由构成集成的各神经网络在该示例下的输出共同决定”。,30/04/2023,Artificial Neural Networks-I,51,ANN Application Areas,ClassificationClusteringAssociative memory Control Function approximation,30/04/2023,Artificial Neural Networks-I,52,ANN Classifier systems,Learning capability Statistical classifier systemsData drivenGeneralisation capabilityHandle and filter large input dataReconstruct noisy and incomplete patternsClassification rules not transparent,30/04/2023,Artificial Neural Networks-I,53,Applications for ANN Classifiers,Pattern recognitionIndustrial inspectionFault diagnosisImage recognitionTarget recognitionSpeech recognitionNatural language processingCharacter recognitionHandwriting recognitionAutomatic text-to-speech conversion,30/04/2023,Artificial Neural Networks-I,54,Clustering with ANNs,Fast parallel distributed processingHandle large input informationRobust to noise and incomplete patternsData drivenPlasticity/AdaptationVisualisation of resultsAccuracy sometimes poor,30/04/2023,Artificial Neural Networks-I,55,ANN Clustering Applications,Natural language processingDocument clusteringDocument retrievalAutomatic queryImage segmentationData miningData set partitioningDetection of emerging clustersFuzzy partitioningCondition-action association,30/04/2023,Artificial Neural Networks-I,56,Associative ANN Memories,Stimulus-response associationAuto-associative memoryContent addressable memoryFast parallel distributed processingRobust to noise and incomplete patternsLimited storage capability,30/04/2023,Artificial Neural Networks-I,57,Application of ANN Associative Memories,Character recognitionHandwriting recognitionNoise filteringData compressionInformation retrieval,30/04/2023,Artificial Neural Networks-I,58,ANN Control Systems,Learning/adaptation capability Data drivenNon-linear mappingFast responseFault toleranceGeneralisation capabilityHandle and filter large input dataReconstruct noisy and incomplete patternsControl rules not transparentLearning may be problematic,30/04/2023,Artificial Neural Networks-I,59,ANN Control Schemes,ANN controllerconventional controller+ANN for unknown or non-linear dynamicsIndirect control schemesANN models direct plant dynamicsANN models inverse plant dynamics,30/04/2023,Artificial Neural Networks-I,60,ANN Control Applications,Non-linear process controlChemical reaction controlIndustrial process controlWater treatmentIntensive care of patientsServo controlRobot manipulatorsAutonomous vehiclesAutomotive controlDynamic system controlHelicopter flight controlUnderwater robot control,30/04/2023,Artificial Neural Networks-I,61,ANN Function Modelling,ANN as universal function approximatorDynamic system modellingLearning capability Data drivenNon-linear mappingGeneralisation capabilityHandle and filter large input dataReconstruct noisy and incomplete inputs,30/04/2023,Artificial Neural Networks-I,62,ANN Modelling Applications,Modelling of highly nonlinear industrial processesFinancial market predictionWeather forecastsRiver flow predictionFault/breakage predictionMonitoring of critically ill patients,30/04/2023,Artificial Neural Networks-I,63,Presented by Martin Ho,Eddy Li,Eric Wong and Kitty Wong-Copyright 2000,Neural Network Approaches,ALVINN-Autonomous Land Vehicle In a Neural Network,30/04/2023,Artificial Neural Networks-I,64,Presented by Martin Ho,Eddy Li,Eric Wong and Kitty Wong-Copyright 2000,Neural Network Approaches,-Developed

    注意事项

    本文(人工神经网络ANNPPT文档资料.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开