欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    工程制图点直线和平面的投影PPT优质精选.ppt

    • 资源ID:4583718       资源大小:4.90MB        全文页数:155页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    工程制图点直线和平面的投影PPT优质精选.ppt

    ,工程制图(含CAD),第二章 点、直线和平面的投影,第二章,第一节 投影法的基本知识第二节 点的投影第三节 直线的投影第四节 平面的投影 第五节 直线与平面、平面与平面的相对位置,第二章 点、直线和平面的投影,200目录,学习要求:(1)了解中心投影的形成和平行投影的形成;(2)理解、掌握平行投影的基本性质;(3)掌握点的投影规律及作图方法;(4)掌握各种位置直线的投影特性和作图方法;(5)了解平面的表示法,理解平面内投影面平行线的作图方法,掌握各种位置平面的投影特性、平面内点和直线的投影特性,及在平面内定点和直线的作图方法。,第一节 投影法的基本知识,问题提出:如何用二维平面图反映三维空间物体?解决要求:对应性直观性度量性 解决方法:将复杂的问题分解成简单的问题将具体的问题抽象成几何模型,210第一节,2-1 投影法的基本知识,投影法是专门为解决这类问题而提出的。,第一节 投影法的基本知识,210,本节主要内容:一、投影法 二、投影法的分类 三、多面投影体系 四、三视图的形成与特点 五、三视图的绘制,2-1 投影法的基本知识,211投影法,一、投影法,实例:物体在光的照射下就会在墙上产生影子。,通过空间点A的直线L称为投射线。通过空间任一点A的投射线与投影面的交点a为A点的投影。利用投射线使物体在指定面上产生图象的方法就是投影法。,那么:影子可以反映物体的实际形状吗?只能反映部分形状只在特殊情况下反映真实尺寸 可以通过投影想象实际物体形状,结论:通过投影将三维物体转换成二维平面物体,但还不能完全反映真实情况。问题:是否可以通过投影用二维平面反映三维物体?,2-1 投影法的基本知识,212分类,二、投影法的分类,投射中心S为一点 投射中心S为无限远,2-1 投影法的基本知识,212中心投影,物体位置改变,投影大小也改变,问题:在中心投影下,投影能否反映物体的真实大小?当物体沿投影面的法线方向移动时,其投影大小变不变?中心投影能否满足绘制工程图样的要求?,投射中心、物体、投影面三者之间的相对距离对投影的大小有影响。度量性较差。,2-1 投影法的基本知识,问题:当物体沿投影面的法线方向移动时,其投影大小变不变?物体的投影有否可能反映某一个面的实形?正投影能否满足绘制工程图样的要求?,212平行投影,答案:投影大小与物体和投影面之间的距离无关,度量性较好。工程图样多数采用正投影法绘制。,斜角投影法,2-1 投影法的基本知识,212投影特性1,平行投影法的特性,从属性平行性定比性类似(显实)性积聚性,直线上的点,投影仍在直线的投影上,2-1 投影法的基本知识,212投影特性2,平行投影法的特性,从属性平行性定比性类似(显实)性积聚性,两平行直线的投影仍相互平行,2-1 投影法的基本知识,212投影特性3,平行投影法的特性,从属性平行性定比性类似(显实)性积聚性,ACCBaccb;ACABacab,同一直线上的点分线段长度之比,等于点的投影分线段之比,2-1 投影法的基本知识,212投影特性4,平行投影法的特性,从属性平行性定比性类似(显实)性积聚性,物体的投影与其实物轮廓类示。,2-1 投影法的基本知识,212投影特性4,平行投影法的特性,从属性平行性定比性类似(显实)性积聚性,若线段和平面图形平行于投影面,则其投影反映实长或实形。,2-1 投影法的基本知识,212投影特性5,平行投影法的特性,从属性平行性定比性类似(显实)性积聚性,若线段和平面的图形垂直于投影面,其投影积聚为一点或一直线。,2-1 投影法的基本知识,213 多面投影,为什么要建立多面投影体系?单一正投影不能完全确定物体的形状和大小。没有解决“对应性”的问题。,三、多面投影体系,2-1 投影法的基本知识,213,有时二个投影面也不能够完全确定物体的形状和大小。仍然没有解决“对应性”的问题。,2-1 投影法的基本知识,Aaa aya azx,A到W面的距离a 点A的水平投影2-4 平面的投影 一般位置平面与特殊位置平面相交,可利用特殊位置 平面的积聚性找出两平面的两个共有点,求出交线。若一平面上的两相交直线对应平行于另一平面上的两相交直线,则这两平面相互平行。只讨论两垂直面都与某一投影面垂直时的情况。空间点A在三投影面上的投影2-4 平面的投影2-3 直线的投影“交点”是两直线上的一 对重影点的投影,用其可帮助判断两直线的空间位置。三、在平面内作直线和点 确定一个共有点及交线的方向。(1)了解中心投影的形成和平行投影的形成;(2)直线为特殊位置特殊位置线面相交,根据平面的积聚性投影,能直接判别直线的可见性。abc、abc积聚为一条线,具有积聚性;四、圆和多边形的投影 另两个投影面上的投影平行于相应的投影轴。2-1 投影法的基本知识2-1 投影法的基本知识,213,三个投影面可以确定任何物体的形状和大小。解决了“对应性”的问题。,2-1 投影法的基本知识,214视图形成,四、三视图的形成与特点,V 正投影面;H 水平投影面;V 侧面投影面;,2-1 投影法的基本知识,214,Y,X,Z,O,三视图的形成,V 正投影面H 水平投影面 W 侧面投影面,规定:V面保持不动,H面向下向后绕OX轴旋转900,W面向右向后绕OZ轴旋转900。,2-1 投影法的基本知识,X方向 作为度量物体长度的方向;Y方向 作为度量物体宽度的方向;Z方向 作为度量物体高度的方向。,主视图 长、高 俯视图 长、宽左视图 高、宽,视图的“度量性”(视图上物体的相对位置),214,2-1 投影法的基本知识,视图的形成与特点,三等关系,主、俯视图长相等且对正,主、左视图高相等且平齐,俯、左视图宽相等且对应,(1)视图的概念 视图就是将物体向投影面投射所得的图形。,214,(2)视图的形成(与投影的关系)主视图 实体的正面投影 俯视图 实体的水平投影 左视图 实体的侧面投影,(3)三视图之间的度量对应关系,2-1 投影法的基本知识,主视图反映:上、下、左、右 俯视图反映:前、后、左、右 左视图反映:上、下、前、后,214,(4)三视图之间方位对应关系,2-1 投影法的基本知识,将物体自然放平,一般使主要表面与投影面平行或垂直,进而确定主视图的投影方向。整体和局部都要符合三视图的投影规律。可见轮廓线用粗实线绘制,不可见的轮廓线用虚线绘制,当虚线与实线重合时画实线。特别应注意俯、左视图宽相等和前、后方位关系。,五、三视图的绘制,215,2-1 投影法的基本知识,例:由物体的立体图画三视图,215,2-1 投影法的基本知识,虚线要画,要注意宽相等,215,2-1 投影法的基本知识,第二节 点的投影,220第二节,2-2 点的投影,本节主要内容:一、点在三投影面中的投影表示法及投影规律 二、两点的相对位置与重影点,2-3 直线的投影定比性 属于线段上的点分割线段之比等于其投影之比。a 点A的正面投影例:由物体的立体图画三视图物体位置改变,投影大小也改变 若两平面为同一投影面的垂直面,且具有积聚性的那组投影相互平行,则这两平面相互平行。2-4 平面的投影已知点的两个投影,求第三投影。特殊位置线面相交,其交点的投影可利用直线或平面的积聚性投影直接求出。三、平行、相交和交叉两直线的投影A点的水平投影 a第五节 直线与平面、平面与平面的相对位置abc、abc、abc均为 ABC的类似形;一、各种位置平面的投影特性 两直线中有一条平行于某一投影面时,在该投影面上的投影反映直角。“交点”是两直线上的一 对重影点的投影,用其可帮助判断两直线的空间位置。直线对一个投影面的投影特性侧平面投影abc 反映 ABC实形。2-4 平面的投影直线与投影面垂直面垂直,221点的投影,采用多面投影,过空间点A的投射线与投影面P的交点即为点A在P面上的投影。,点在一个投影面上的投影不能确定点的空间位置。,点在一个投影面上的投影,a,一、点在三投影面中的投影表示法及投影规律,1.为什么要使用三个视图?,2-2 点的投影,221,A点的水平投影 aA点的垂直投影 a,点在两投影面体系中的投影,两投影面体系的建立,点在两投影面体系中的投影,2-2 点的投影,(1)点的正面投影和水平投影的连线垂直于OX轴;(2)点的正面投影到OX轴的距离反映该点到H面的距离;点的水平投影到OX轴的距离反映该点到V面的距离。点的投影到相应投影轴的距离,反映空间点到相应投影面的距离。,点在两投影面体系中的投影规律,221,在Z方向的位置?,2-2 点的投影,投影面,正面投影面(简称正面或V面),水平投影面(简称水平面或H面),侧面投影面(简称侧面或W面),投影轴,OX轴 V面与H面的交线,OZ轴 V面与W面的交线,OY轴 H面与W面的交线,221,2.点在三投影面中的投影表示法,三个投影面互相垂直,2-2 点的投影,221,空间点A在三投影面上的投影,空间点用大写字母表示,点的投影用小写字母表示。,a 点A的正面投影a 点A的水平投影a 点A的侧面投影,2-2 点的投影,X,Y,Z,O,V,H,W,A,a,a,a,向右翻,向下翻,不动,221,投影面展开,2-2 点的投影,221,3.点在三投影面中的投影规律,2-2 点的投影,水平投影a 反映A点X和Y的坐标;正面投影a反映A点X和Z的坐标;侧面投影a反映A点Y和Z的坐标。,221,点的三面投影和坐标的关系,2-2 点的投影,a,a,ax,az,az,解法一:,通过作45线使aaz=aax,解法二:,用分规直接量取aaz=aax,221例,已知点的两个投影,求第三投影。,2-2 点的投影,221,特殊位置点,2-2 点的投影,若一直线过平面内的一点,且平行于该平面内的另一直线,则此直线在该平面内。直线平行于平面内的一条直线。a 点A的侧面投影例1:试判断两平面是否平行。一、平面的投影特性,尤其是特殊位置平面的投影特性。两直线相交吗?为 什 么?求直线与平面的交点的方法2-1 投影法的基本知识所以ABC和DEF的交线应为MK。2-4 平面的投影Z方向 作为度量物体高度的方向。直线对一个投影面的投影特性在它垂直的投影面上的投影积聚成直线。投影特性 一般位置直线与特殊位置平面求交点,利用交点的共 有性和平面的积聚性直接求解。例:由物体的立体图画三视图点的一个投影到某投影轴的距离等于空间点到与该投影轴相邻的投影面之间的距离。第一节 投影法的基本知识过空间点A的投射线与投影面P的交点即为点A在P面上的投影。例:求两平面的交线MN并判别可见性。,b,b,c,c,e,e,c,e,b,z,x,YW,YH,0,d,d,d,221例,例:已知点的两投影,求其第三投影。,2-1 投影法的基本知识,点的投影规律 一点的两投影之间的连线垂直于投影轴;点的一个投影到某投影轴的距离等于空间点到与该投影轴相邻的投影面之间的距离。,221小结,小结:,2-1 投影法的基本知识,点的投影与直角坐标的关系 若把三个投影面当作空间直角坐标面,投影轴当作直角坐标轴,则点的空间位置可用其(X、Y、Z)三个坐标来确定,点的投影就反映了点的坐标值,其投影与坐标值之间存在着对应关系。点的一个投影反映了点的两个坐标。已知点的两个投影,则点的X、Y、Z三个坐标就可确定,即空间点是唯一确定的。因此已知一个点的任意两个投影即可求出其第三投影。,221小结,小结:,2-1 投影法的基本知识,各种位置点的投影 空间点 点的X、Y、Z三个坐标均不为零,其三个投影都不在投影轴上。投影面上的点 点的某一个坐标为零,其一个投影与投影面重合,另外两个投影分别在投影轴上。投影轴上的点 点的两个坐标为零,其两个投影与所在投影轴重合,另一个投影在原点上。与原点重合的点 点的三个坐标为零,三个投影都与原点重合。,221小结,小结:,2-1 投影法的基本知识,两点的相对位置指两点在空间的上下、前后、左右位置关系。,判断方法:,x 坐标大的在左,y 坐标大的在前,z 坐标大的在上,222两点位置,二、两点的相对位置与重影点,B点在A点之前、之右、之下。,1.两点的相对位置,2-1 投影法的基本知识,例题:已知A点在B点之右8毫米,之前5毫米,之上9毫米,求A点的投影。,222例,2-1 投影法的基本知识,两点的相对位置 两点的相对位置是根据两点相对于投影面的距离远近(或坐标大小)来确定的。X坐标值大的点在左;Y坐标值大的点在前;Z坐标值大的点在上。根据一个点相对于另一点上下、左右、前后坐标差,可以确定该点的空间位置并作出其三面投影。,222小结,小结:,2-1 投影法的基本知识,空间两点在某一投影面上的投影重合为一点时,则称此两点为该投影面的重影点。,A、B为H面的重影点,被挡住的投影加(),2.重影点,222,2-1 投影法的基本知识,重影点及可见性判别 若两点位于同一条垂直某投影面的投射线上,则这两点在该投影面上的投影重合,这两点称为该投影面的重影点。重影点在三对坐标值中,必定有两对相等。从投影方向观看,重影点必有一个点的投影被另一个点的投影遮住而不可见。判断重影点的可见性时,需要看重影点在另一投影面上的投影,坐标值大的点投影可见,反之不可见,不可见点的投影加括号表示。,222小结,小结:,2-1 投影法的基本知识,230第三节,2-3 直线的投影,第三节 直线的投影,两点确定一条直线,将两点的同名投影用直线连接,就得到直线的同名投影。,本节主要内容:一、各种位置直线的投影特性 二、直线与点的相对位置 三、平行、相交和交叉两直线的投影 四、一边平行于投影面的直角的投影,正面投影a反映A点X和Z的坐标;2-3 直线的投影2-4 平面的投影2-3 直线的投影空间点 点的X、Y、Z三个坐标均不为零,其三个投影都不在投影轴上。2-1 投影法的基本知识2-1 投影法的基本知识投影轴上的点 点的两个坐标为零,其两个投影与所在投影轴重合,另一个投影在原点上。2-5 直线与平面、平面与平面的相对位置二、如何在平面上确定直线和点。点在一个投影面上的投影 在其平行的那个投影面上的投影反映实长,并反映直线与另两投影面倾角的实大。2-1 投影法的基本知识abc与OX、OY的夹角反映、角的真实大小a 点A的水平投影如何求得直线实长及与三个投影面夹角的实大?将复杂的问题分解成简单的问题若直角有一边平行于投影面,则它在该投影面上的投影仍为直角。结论:通过投影将三维物体转换成二维平面物体,但还不能完全反映真实情况。(3)三视图之间的度量对应关系,231直线投影,直线对一个投影面的投影特性,直线投影的基本特性:一般情况下,直线的投影仍然为直线,特殊情况为一个点。,直线垂直于投影面投影重合为一点 积 聚 性,直线平行于投影面投影反映线段实长 显实性 ab=AB,直线倾斜于投影面投影比空间线段短 类似性ab=ABcos,一、各种位置直线的投影特性,2-3 直线的投影,投影面平行线,投影面垂直线,正平线(平行于面),侧平线(平行于面),水平线(平行于面),正垂线(垂直于面),侧垂线(垂直于面),铅垂线(垂直于面),一般位置直线,统称特殊位置直线,231直线位置,直线在三个投影面中的位置,2-3 直线的投影,1、投影面平行线,水平线,正平线,侧平线,231平行,2-3 直线的投影,水平线,侧平线,正平线,与H面的夹角;与V面的角;与W面的夹角,实长,实长,实长,231平行,投影特性:在其平行的那个投影面上的投影反映实长,并反映直线与另两投影面倾角的实大。另两个投影面上的投影平行于相应的投影轴。,投影面平行线的特性,2-3 直线的投影,2、投影面垂直线,铅垂线,正垂线,侧垂线,231垂直,2-3 直线的投影,铅垂线,正垂线,侧垂线,231垂直,投影特性:在其垂直的投影面上,投影有积聚性。另两个投影,反映线段实长,且垂直于相应的投影轴。,投影面垂直线的特性,2-3 直线的投影,3、一般位置直线,231一般位置,2-3 直线的投影,231一般位置,投影特性:三个投影都缩短。即:都不反映空间线段的实长及与三个投影面夹角的实大,且与三根投影轴都倾斜。,一般位置直线的特性,如何求得直线实长及与三个投影面夹角的实大?,2-3 直线的投影,(1)求直线的实长及对水平投影面的夹角角,|zA-zB|,231求线长,(附加内容),2-3 直线的投影,(2)求直线的实长及对正面投影面的夹角 角,|YA-YB|,|YA-YB|,231求线长,(附加内容),2-3 直线的投影,问题:在中心投影下,投影能否反映物体的真实大小?当物体沿投影面的法线方向移动时,其投影大小变不变?一般位置平面内存在一般位置直线和投影面平行线,不存在投影面垂直线。2-5 直线与平面、平面与平面的相对位置过空间点A的投射线与投影面P的交点即为点A在P面上的投影。若两平面为同一投影面的垂直面,且具有积聚性的那组投影相互平行,则这两平面相互平行。例2:在平面ABC上取一点K,使点K在点A之下15mm、在点A之前20mm处。2-3 直线的投影二、如何在平面上确定直线和点。所以ABC和DEF的交线应为MK。圆平面在所垂直的投影面上的投影是直线,其长度等于圆的直径;若空间两直线相交,则其同名投影必相交,且交点的投影必符合空间一点的投影规律。若空间两直线相交,则其同名投影必相交,且交点的投影必符合空间一点的投影规律。例 过点E 作线段AB、CD 的公垂线EF。两平行直线的投影仍相互平行若直线垂直于平面,则直线的正面投影垂直于这个平面上的正平线的正面投影;特别应注意俯、左视图宽相等和前、后方位关系。“交点”是两直线上的一 对重影点的投影,用其可帮助判断两直线的空间位置。abc与OX、OY的夹角反映、角的真实大小一般位置平面与特殊位置平面相交侧面投影a反映A点Y和Z的坐标。,(3)求直线的实长及对侧面投影面的夹角 角,231求线长,(附加内容),2-3 直线的投影,|XA-XB|,例 图示投影中已知线段的实长AB,求它的水平投影。,231例,2-3 直线的投影,ab,232直线与点,二、直线与点的相对位置,直线与点的相对位置有二种:点在直线上,或不在直线上。,点在直线上的情况:,2-3 直线的投影,若点在直线上,则点的投影必在直线的同名投影上。并将线段的同名投影分割成与空间相同的比例。即:AC/CB=ac/cb=ac/cb,若点的投影有一个不在直线的同名投影上,则该点必不在此直线上。,定比定理,232,点在直线上的判别方法:,2-3 直线的投影,1.从属性 若点在直线上,则点的各个投影必在直线的各同面投影上。利用这一特性可以在直线上找点,或判断已知点是否在直线上。2.定比性 属于线段上的点分割线段之比等于其投影之比。即:A C:C Ba c:c b ac:cb ac:c b,直线上的点具有两个特性:,232,2-3 直线的投影,点C不在直线AB上,点C在直线AB上,232例,例1:判断点C是否在线段AB上。,2-3 直线的投影,a,b,因k不在a b上,故点K不在AB上。,应用定比定理,a,b,k,a,b,k,232例,例2:判断点K是否在线段AB上。,?,2-3 直线的投影,232例,例3:已知点C 在线段AB上,求点C 的正面投影。,2-3 直线的投影,AB,zA-zB,c,ab,232例,例4:已知线段AB的投影,试定出属于线段AB上点C的投影,使BC的实长等于已知长度L。,2-3 直线的投影,平行,相交,交叉,垂直相交,三、平行、相交和交叉两直线的投影,233直线位置,2-3 直线的投影,(1)两直线平行,233平行,空间两直线的相对位置分为:平行、相交、交叉。,投影特性:空间两直线平行,则其各同名投影必相互平行,反之亦然。,2-3 直线的投影,a,b,c,d,c,a,b,d,例1:判断图中两条直线是否平行。,对于一般位置直线,只要有两个同名投影互相平行,空间两直线就平行。,AB/CD,233例,2-3 直线的投影,b,d,c,a,c,b,a,d,d,b,a,c,对于特殊位置直线,只有两个同名投影互相平行,空间直线不一定平行。,求出侧面投影后可知:,AB与CD不平行。,例2:判断图中两条直线是否平行。,求出侧面投影,233例,2-3 直线的投影,判别方法:,若空间两直线相交,则其同名投影必相交,且交点的投影必符合空间一点的投影规律。,交点是两直线的共有点,233相交,(2)两直线相交,2-3 直线的投影,例:过C点作水平线CD与AB相交。,先作正面投影,233例,2-3 直线的投影,1(2),3(4),同名投影可能相交,但“交点”不符合空间一个点的投影规律。,“交点”是两直线上的一 对重影点的投影,用其可帮助判断两直线的空间位置。,、是面的重影点,、是H面的重影点。,两直线相交吗?为 什 么?,233交叉,(3)两直线交叉,投影特性:,2-3 直线的投影,例 判断两直线的相对位置,1d,1c,233例,不作侧视图,如何判断?,定比定理,2-3 直线的投影,判断两直线重影点的可见性,判断重影点的可见性时,需要看重影点在另一投影面上的投影,坐标值大的点投影可见,反之不可见,不可见点的投影加括号表示。,233可见性,2-3 直线的投影,例 判断两直线重影点的可见性,233例,2-3 直线的投影,直角的投影特性:若直角有一边平行于投影面,则它在该投影面上的投影仍为直角。,设:直角边BCH面因:BCAB,同时BCBb所以:BCABba平面,即:abc为直角,因此:bcab,故:bcABba平面,又因:BCbc,证明:,233垂直相交,四、一边平行于投影面的直角的投影,2-3 直线的投影,直线在H面上的投影互相垂直,N点的水平投影n位于def的外面,说明点N位于DEF所确定的平面内,但不位于DEF这个图形内。与原点重合的点 点的三个坐标为零,三个投影都与原点重合。例4:已知线段AB的投影,试定出属于线段AB上点C的投影,使BC的实长等于已知长度L。求两平面交线的问题可以看作是求两个共有点的问题,由于特殊位置平面的某些投影有积聚性,交线可直接求出。例1:已知K点在平面ABC上,求K点的水平投影。若一平面上的两相交直线对应平行于另一平面上的两相交直线,则这两平面相互平行。2-1 投影法的基本知识若空间两直线相交,则其同名投影必相交,且交点的投影必符合空间一点的投影规律。结论:通过投影将三维物体转换成二维平面物体,但还不能完全反映真实情况。因k不在a b上,2-5 直线与平面、平面与平面的相对位置空间点A在三投影面上的投影2-5 直线与平面、平面与平面的相对位置(1)点的正面投影和水平投影的连线垂直于OX轴;点在一个投影面上的投影不能确定点的空间位置。可以通过投影想象实际物体形状点在两投影面体系中的投影空间点A在三投影面上的投影 一般位置直线与特殊位置平面求交点,利用交点的共 有性和平面的积聚性直接求解。重影点在三对坐标值中,必定有两对相等。,a,b,c,a,b,c,例:过C点作直线与AB垂直相交。,233例,2-3 直线的投影,e,e,e,e,c,c,例 已知直线AB的两面投影和C点的水平投影,试过C点作一条直线CE垂直于AB,求直线CE的两面投影。,233例,2-3 直线的投影,有无其它解?有多个解!,例 过点E 作线段AB、CD 的公垂线EF。,233例,2-3 直线的投影,230小结0,点与直线的投影特性,尤其是特殊位置直线的投影特性。点与直线及两直线的相对位置的判断方法及投影特性。定比定理。直角定理,即两直线垂直时的投影特性。,本节重点,2-3 直线的投影,一、各种位置直线的投影特性,1.一般位置直线 三个投影与各投影轴都倾斜,三个投影都缩短。投影面平行线 在其平行的投影面上的投影反映线段实长及与相应投影面的夹角。另两个投影平行于相应的投影轴。投影面垂直线 在其垂直的投影面上的投影积聚为一点。另两个投影反映实长且垂直于相应的投影轴。,230小结1,2-3 直线的投影,二、直线上的点,1.点的投影在直线的同名投影上;点分线段成定比,点的投影必分线段的投影成定比 定比定理。,230小结2,2-3 直线的投影,230小结3,三、两直线的相对位置,1.平行 同名投影互相平行。相交 同名投影相交,交点是两直线的共有点,且符合空间一个点的投影规律。交叉(异面)同名投影可能相交,但“交点”不符合空间一个点的投影规律。“交点”是两直线上一对重影点的投影。,2-3 直线的投影,四、相互垂直的两直线的投影特性,1.两直线同时平行于某一投影面时,在该投影面上的投影反映直角。两直线中有一条平行于某一投影面时,在该投影面上的投影反映直角。两直线均为一般位置直线时,在三个投影面上的投影都不反映直角。,230小结4,直角定理,2-3 直线的投影,240第四节,2-4 平面的投影,第四节 平面的投影,本节主要内容:一、平面的表示法 二、各种位置平面的投影 三、在平面内作直线和点 四、圆和多边形的投影,不在同一直线上 的 三 个 点,直 线 及线外一点,两平行直 线,两相交直 线,平面图形,如何才能够确定一个平面?,一、平面的表示法,用几何元素表示平面,不在一条直线上的三个点一条直线和线外的一个点相交二直线平行二直线平面图形,241平面表示,2-4 平面的投影,241,用轨迹线表示平面,轨迹线 平面与投影面的交线,2-4 平面的投影,显实性,类似性,积聚性,1.平面对一个投影面的投影特性,二、各种位置平面的投影,242平面投影,2-4 平面的投影,平面对于三投影面的位置可分为三类:,投影面垂直面,投影面平行面,一般位置平面,垂直于某一投影面,倾斜于另两个投影面,平行于某一投影面,垂直于另两个投影面,与三个投影面都倾斜,242,2.平面在三投影面体系中的投影特性,2-4 平面的投影,(1)投影面的垂直面,铅垂面,正垂面,侧垂面,242垂直面,2-4 平面的投影,投影特性:1.abc积聚为一条线 2.abc、abc为ABC的类似形 3.abc与OX、OY的夹角反映、角的真实大小,铅垂面,242铅垂面,2-4 平面的投影,242,积聚性,铅垂面,类示性,类示性,2-4 平面的投影,242正垂面,正垂面,投影特性:1.abc 积聚为一条线 2.abc、abc为 ABC的类似形 3.abc与OX、OY的夹角反映、角的真实大小,2-4 平面的投影,侧垂面,投影特性:1.abc积聚为一条线 2.abc、abc为 ABC的类似形 3.abc与OX、OY的夹角反映、角的真实大小,242侧垂面,2-4 平面的投影,a,b,c,a,c,b,c,b,a,类似性,积聚性,铅垂面,投影特性:在它垂直的投影面上的投影积聚成直线。该直线与投影轴的夹角反映空间平面与另外两投影面夹角的大小。另外两个投影面上的投影有类似性。,为什么?,242特性,类似性,2-4 平面的投影,水平面,正平面,侧平面,(2)投影面的平行面,242平行面,2-4 平面的投影,242,水平面,侧平面,正平面,2-4 平面的投影,242水平,水平面,投影特性:1.abc、abc积聚为一条线,具有积聚性;2.水平投影abc反映 ABC实形。,2-4 平面的投影,242,水平面,实形,积聚性,积聚性,2-4 平面的投影,242正平,投影特性:1.abc、abc积聚为一条线,具有积聚性;2.正平面投影abc反映 ABC实形。,正平面,2-4 平面的投影,242侧平,投影特性:1.abc、abc 积聚为一条线,具有积聚性;2.侧平面投影abc 反映 ABC实形。,侧平面,2-4 平面的投影,242,侧平面,实形,积聚性,积聚性,2-4 平面的投影,积聚性,积聚性,实形性,水平面,242特性,投影特性:它所平行的投影面上的投影反映实形。另两个投影面上的投影分别积聚成与相应的投影轴平行的直线。,为什么?,2-4 平面的投影,(3)一般位置平面,242一般位置,2-4 平面的投影,242特性,投影特性:1.abc、abc、abc均为 ABC的类似形;2.不反映、的真实角度。,一般位置平面,2-4 平面的投影,1.平面内作直线,三、在平面内作直线和点,243平面内作点线,2-4 平面的投影,243,直线过平面内两点,直线过平面内的一点,且平行于该平面上的另一直线,2-4 平面的投影,平面内作直线,a,b,c,b,c,a,d,n,m,解法一,解法二,根据定理二,根据定理一,有无数解。,243例,例:已知平面由直线AB、AC所确定,试在平面内任作一条直线。,2-4 平面的投影,n,m,n,m,唯一解!,243例,例:在平面ABC内作一条水平线,使其到H面的距 离为10mm。,2-4 平面的投影,243平面取点,2.平面内取点,2-4 平面的投影,先找出过此点而又在平面内的一条直线作为辅助线,然后再在该直线上确定点的位置。,首先面上取线,例1:已知K点在平面ABC上,求K点的水平投影。,利用平面的积聚性求解,通过在面内作辅助线求解,243例1,2-4 平面的投影,例2:已知ABC给定一平面,试判断点D是否属于该平面。,e,e,243例2,不属于!,2-4 平面的投影,k,b,例3:已知AC为正平线,补全平行四边形ABCD的水平投影。,解法一,解法二,243例3,2-4 平面的投影,243例4,a,d,e,g,f,h,1,c,2,b,d,e,f,c,1,a,g,2,h,b,例4:求作平面梯形ABCD上的梯形EFGH的水平投影。,2-4 平面的投影,一般位置平面内存在一般位置直线和投影面平行线,不存在投影面垂直线。,243,3.在平面内作投影面平行线,水平线,侧平线,正平线,2-4 平面的投影,243,2-4 平面的投影,例1:已知 ABC给定一平面,试过点C作属于该平面的正平线,过点A作属于该平面 的水平线。,m,n,n,m,243例1,2-4 平面的投影,243例2,例2:在平面ABC上取一点K,使点K在点A之下15mm、在点A之前20mm处。,2-4 平面的投影,k,k,有无其他解题方法?,243例2,例2:在平面ABC上取一点K,使点K在点A之下15mm、在点A之前20mm处。,2-4 平面的投影,k,k,四、圆和多边形的投影,1.圆的投影,244圆投影1,圆的投影特性:圆平面在所平行投影面上的投影反映实形;,显实性,圆平面在所垂直的投影面上的投影是直线,其长度等于圆的直径;,集聚性,2-4 平面的投影,圆的投影,244圆投影2,圆的投影特性:圆平面在所倾斜的投影面上的投影是椭圆。其长轴是圆的平行于这个投影面的直径的投影;短轴是圆的与上述直径垂直的直径的投影;,类似性,集聚性,2-4 平面的投影,2.多边形的投影,244多边形投影,多边形投影是由一些点和线构成的,因此,求作多边形的投影图就是应用点、直线和平面的投影特性以及在平面内作点和作直线的方法作图。,2-4 平面的投影,250第五节,第五节 直线与平面、平面与平面的相对位置,由于工程中的形体都是由点。直线和平面围成的,就必然存在直线与平面、平面与平面的相对位置问题。即它们之间的平行、相交和垂直等关系,也就是通常所讲的线、面关系问题。,本节主要内容:一、平行问题 二、相交问题 三、垂直平行,2-5 直线与平面、平面与平面的相对位置,直线与平面平行,平面与平面平行,1.直线与平面平行,251平行,一、平行问题,2-5 直线与平面、平面与平面的相对位置,a,c,b,m,a,b,c,m,有无数解,251例1,例1:过M点作直线MN平行于平面ABC。,2-5 直线与平面、平面与平面的相对位置,正平线,c,b,a,m,a,b,c,m,唯一解,251例2,例2:过M点作直线MN平行于V面和平面ABC。,2-5 直线与平面、平面与平面的相对位置,平面CDE内没有平行于AB的直线 直线AB不平行于定平面CDE,251例3,例3:试判断直线AB是否平行于定平面CDE。,2-5 直线与平面、平面与平面的相对位置,若一平面上的两相交直线对应平行于另一平面上的两相交直线,则这两平面相互平行。,若两平面为同一投影面的垂直面,且具有积聚性的那组投影相互平行,则这两平面相互平行。,251面面平行,2.两平面平行,2-5 直线与平面、平面与平面的相对位置,251例1,例1:试判断两平面是否平行。,BNER,AMDS 两平面平行,2-5 直线与平面、平面与平面的相对位置,251例2,例2:已知平面由平行两直线AB和CD给定。试过点K作一平面平行于已知平面。,2-5 直线与平面、平面与平面的相对位置,直线与平面相交,其交点是直线与平面的共有点。要讨论的问题:(1)求直线与平面的交点。(2)判别两者之间的相互遮挡关系,即判别可见性。我们只讨论直线与平面中至少有一个处于特殊位置的情况。,252相交,二、相交问题,直线与平面相交,平面与平面相交,1.直线与平面相交,2-5 直线与平面、平面与平面的相对位置,252垂直面,(1)平面为特殊位置,直线与投影面垂直面(铅垂面)相交,2-5 直线与平面、平面与平面的相对位置,a,b,c,m,n,c,n,b,a,m,空间及投影分析,求交点,判别可见性,还可通过重影点判别可见性。,1(2),作 图,252例,例:求直线MN与平面ABC的交点K并判别可见性。,2-5 直线与平面、平面与平面的相对位置,平面ABC是一铅垂面,其水平投影积聚成一条直线,该直线与mn的交点即为K点的水平投影。,由水平投影可知,KN段在平面前,故正面投影上kn为可见。,252铅垂线,投影面垂直线(铅垂线)与投影面相交,(2)直线为特殊位置,2-5 直线与平面、平面与平面的相对位置,k,m(n),b,m,n,c,b,a,a,c,空间及投影分析,求交点,判别可见性,作 图,用面上取点法,252例,例:求直线MN与平面ABC的交点K并判别可见性。,2-5 直线与平面、平面与平面的相对位置,直线MN为铅垂线,其水平投影积聚成一个点,故交点K的水平投影也积聚在该点上。,平面ABC的空间位置:AC在前,所以K点至AC部分平面可见,直线KN不可见。,两平面相交其交线为直线,交线是两平面的共有线,同时交线上的点都是两平面的共有点。,要讨论的问题:,求两平面的交线,方法:,确定两平面的两个共有点。,确定一个共有点及交线的方向。,只讨论两平面中至少有一个处于特殊位置的情况。,判别两平面之间的相互遮挡关系,即:判别可见性。,252面面相交,1.两平面相交,2-5 直线与平面、平面与平面的相对位置,可通过正面投影直观地进行判别。,a,b,c,d,e,f,c,f,d,b,e,a,m(n),空间及投影分析,平面ABC与DEF都为正垂面,它们的正面投影都积聚成直线。交线必为一条正垂线,只要求得交线上的一个点便可作出交线的投影。,求交线,判别可见性,作 图,从正面投影上可看出,在交线左侧,平面ABC在上,其水平投影可见。,能!,如何判别?,252例,(1)两平面均为特殊位置,例:求两平面的交线MN并判别可见性。,2-5 直线与平面、平面与平面的相对位置,b,c,f,h,a,e,a,b,c,e,f,h,空间及投影分析,平面EFH是一水平面,它的正面投影有积聚性。ab与ef的交点m、b c与f h的交点n即为两个共有点的正面投影,故mn即MN的正面投影。,求交线,判别可见性,点B在上,点B至交线部分可见;点B的对面为另一平面可见,自身不可见。,作 图,(2)一个平面为特殊位置 投影面平行面,252例,例:求两平面的交线MN并判别可见性。,2-5 直线与平面、平面与平面的相对位置,c,d,e,f,a,b,a,b,c,d,e,f,投影分析,N点的水平投影n位于def的外面,说明点N位于DEF所确定的平面内,但不位于DEF这个图形内。所以ABC和DEF的交线应为MK。,252例,(3)一个平面为特殊位置投影面垂直面,例:求两平面的交线MN并判别可见性。,2-5 直线与平面、平面与平面的相对位置,若直线垂直于平面上的任意两条相交直线,则该直线垂直于平面内的所有直线,即垂直于平面。在此只讨论直线与投影面垂直面的交点及投影作图问题。,252垂直,三、垂直问题,直线与平面垂直,平面与平面垂直,1.直线与平面垂直,2-5 直线与平面、平面与平面的相对位置,253直面垂直,投影特性 若直线垂直于平面,则直线的正面投影垂直于这个平面上的正平线的正面投

    注意事项

    本文(工程制图点直线和平面的投影PPT优质精选.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开