[名校联盟]湖北省麻城市集美学校九年级数学下册课件:2721相似三角形的判定(1).ppt
,27.2.1相似三角形的判定(1),1.对应角_,对应边的的两个 三角形,叫做相似三角形 Z.X.X.K,相等,比相等,2.相似三角形的,各对应边的,对应角相等,比相等,如果 ABC DEF,那么,A=D,B=E,C=F,回顾,在ABC和ABC中,如果,A=A,B=B,C=C,我们就说ABC与ABC相似,记作:ABCABC.,k就是它们的相似比.,如果k=1,这两个三角形有怎样的关系?,相似比学科网,AB:A1B1=,BC:B1C1=,CD:C1D1,=k,时,,则ABC 与A1B1C1 的相似比为 k.或A1B1C1 与ABC 的相似比为.,学习三角形全等时,我们知道,除了可以通过证明对应角相等,对应边相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS)类似地,判定两个三角形相似时,是不是对所有的对应角和对应边都要一一验证呢?ZXXK,为了证明相似三角形的判定定理,我们先来学习下面的平行线分线段成比例定理。,L3,L4,L5,L1,L2,L1L2,L3,L4,L5,L1,L2,L3,L4,L5,L1,L2,L3,L4,L5,L1,L2,L3,L4,L5,L1,L2,L1,L2,L3,L4,L5,DEBC,DEBC,数学符号语言,数学符号语言,平行线分线段成比例定理推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等,解:,DEBC,练习二:,A,B,D,C,E,EC,BC,DC,A,B,C,D,E,(A组),(B组),1、如图:已知 DEBC,AB=14,AC=18,AE=10,求:AD的长。,CB=4,,BE,AB,=,A,A,B,C,D,E,C,达标检测题:,1、如图:已知 DEBC,AB=5,AC=7,AD=2,求:AE的长。,B,D,E,(A组),(B组),2、已知 A=E=60求:BD的长。,如图,在ABC 中,DE/BC,DE分别交AB,AC 于点D,E,ADE与ABC有什么关系?,思,考,?,观察图形猜测,ADE与ABC相似,我们通过相似的定义证明这个结论.,先证明两个三角形的对应角相等.,在ADE与ABC中,A=A,DE/BC,ADE=B,AED=C.,再证明两个三角形的对应边的比相等.,过E作EF/AB,EF交BC于F点.,在平行四边形BFED中,DE=BF,DB=EF.,即:ADE与ABC中,A=A,ADE=B,AED=C.,ADEABC,判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,平行于三角形一边的直线与其它两边相交,所得的三角形与原三角形_.,相似,“A”型,理解,平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。,即:如果DEBC,那么ADEABC,你能证明吗?,8字型,请写出它们的对应边的比例式,理解,已知:如图,ABEF CD,,3,图中共有_对相似三角形。,EOFCOD,ABEF,AOB FOE,ABCD,EFCD,AOB DOC,理解,如图,ABC 中,DEBC,GFAB,DE、交于点,则图中与ABC相似的三角形共有多少个?请你写出来.,解:与ABC相似的三角形有3个:,A,运用4,如图在平行四边形ABCD中,E为AD上一点,连结CE并延长交BA的延长线于点F,请找出相似的三角形并表示出来。,如图,已知DE BC,AE=50cm,EC=30cm,BC=70cm,BAC=450,ACB=400.(1)求AED和ADE的大小;(2)求DE的长.,(2),解:(1),DE BC,ADEABC,AED=C=400.,ADEABC,运用,在ADE中,ADE=1800-400-450=950.,如图,在ABC中,DGEHFIBC,(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG:BC=_。,ADGAEHAFIABC,1:4,运用,类似于判定三角形全等的方法,我们还能不能通过三边来判断两个三角形相似呢?,思考,是否有ABCABC?,A,B,C,三边对应成 比例,已知:如图ABC和 中,求证:ABCABC,证明:在ABC的边AB(或延长线)上截取AD=AB,D,E,过点D作DEBC交AC于点E.,又,ADEABC,.,因此.,ABC,ADE,要证明ABCABC,可以先作一个与ABC全等的三角形,证明它与ABC相似这里所作的三角形是证明的中介,它把ABCABC联系起来,回顾,ABCABC,如果两个三角形的三组对应边的比相等,那么这两个三角形相似.,简单地说:三组对应边的比相等,两三角形相似.,类似于判定三角形全等的方法,我们能通过两边和夹角来判断两个三角形相似吗?,实际上,我们有利用两边和夹角判定两个三角形相似的方法,如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角相似.,思,考,?,对于ABC和ABC,如果,B=B,这两个三角形一定相似吗?试着画画看.,例1:根据下列条件,判断ABC与ABC是否相似,并说明理由(1)A=1200,AB=7cm,AC=14cm.A=1200,AB=3cm,AC=6cm.(2)AB=4 cm,BC=6cm,AC=8cm,AB=12cm,BC=18cm,AC=21cm.,ABC与ABC的三组对应边的比不等,它们不相似,要使两三角形相似,不改变的AC长,AC的长应改为多少?,练习,1.根据下列条件,判断ABC与ABC是否相似,并说明理由:,(1)A=400,AB=8,AC=15,A=400,AB=16,AC=30;,(2)AB=10cm,BC=8cm,AC=16cm,AB=16cm,BC=12.8cm,AC=25.6cm.,2.图中的两个三角形是否相似?,运用2,试说明BAD=CAE.,ABCADEBAC=DAEBACDAC=DAEDAC即BAD=CAE,运用3,答案是2:1,理解,4:2=5:x=6:y4:x=5:2=6:y4:x=5:y=6:2,5.要作两个形状相同的三角形框架,其中一个三角形的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?,4,5,6,2,6.在正方形ABCD中,E为AD上的中点,F是AB的四分一等分点,连结EF、EC;AEF与DCE是否相似?说明理由.,7、已知:如图,BD、CE是ABC的高,试说明 ADEABC。,平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似;,两边对应成比例且夹角相等,两三角形相似.,相似三角形的判定方法,小结,三边对应成比例,两三角形相似.,