《二次函数》课件.ppt
26.1.1 二次函数,正方体的六个面是全等的正方形,设正方形的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为,问题:,y=6x2,问题1 多边形的对角线数d与边数n有什么关系?,问题:,由图可以想出,如果多边形有n条边,那么它有 个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可以作 条对角线.,n,(n-3),因为像线段MN与NM那样,连接相同两顶点的对角线是同一条对角线,所以多边形的对角线总数,M,N,即,问题2 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?,问题:,这种产品的原产量是20件,一年后的产量是 件,再经过一年后的产量是 件,即两年后的产量为,20(1+x),20(1+x)2,即,式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y都有一个对应值,即y是x的函数.,函数有什么共同点?,观察,y是x的函数吗?y是x的一次函数?反比例函数?,y=6x2,在上面的问题中,函数都是用自变量的二次式表示的,定义:一般地,形如y=ax+bx+c(a,b,c是常数,a 0)的函数叫做x的二次函数。,(1)等号左边是变量y,右边是关于自变量x的,(3)等式的右边最高次数为,可以没有一次项和常数项,但不能没有二次项。,注意:,(2)a,b,c为常数,且,(4)x的取值范围是。,整式,a0.,2,任意实数,二次函数的一般形式:,yax2bxc(其中a、b、c是常数,a0)二次函数的特殊形式:当b0时,yax2c当c0时,yax2bx当b0,c0时,yax2,例题讲解,例1、下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.(1)y=3(x-1)+1(2)y=x+(3)s=3-2t(4)y=(x+3)-x(5)y=-x(6)v=10 r,解:,y=3(x-1)+1=3(x2-2x+1)+1=3x2-6x+3+1即,y=3x2-6x+4,是二次函数.,二次项系数:,一次项系数:,常数项:,3,-6,4,不是二次函数.,(3)s=3-2t是二次函数.,二次项系数:,一次项系数:,常数项:,-2,0,3,(4)y=(x+3)-x=x2+6x+9-x2即,y=6x+9,不是二次函数.,二次项系数:,一次项系数:,常数项:,10,0,0,不是二次函数.,(6)v=10 r,是二次函数.,例题讲解,解:()当m27=1且m+30即m=时是正比例函数。,()当m27=-1且m+30即m=时是反比例函数。,()当m27=2且m+30即m=3时是二次函数。,例题讲解,例3、圆的半径是1cm,假设半径增加xcm时,圆的面积增加ycm。(1)写出y与x之间的函数关系表达式;(2)当圆的半径分别增加1cm,2cm时,圆的面积增加多少?,随堂练习,2.函数 y=(m-n)x2+mx+n 是二次函数的条件是()A.m,n是常数,且m0 B.m,n是常数,且n0C.m,n是常数,且mn D.m,n为任何实数,C,C,1.一个圆柱的高等于底面半径,写出它的表面积 s 与半径 r 之间的关系式.2.n支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数 m与球队数 n 之间的关系式.,随堂练习,S=4r2,即,想一想,一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为Xm,菜园的面积为Ym2,求y与x之间的函数关系式,并说出自变量的取值范围。当x=12m时,计算菜园的面积。,xm,y m2,xm,(40-2x)m,解:,由题意得:,Y=x(40-2x),即:Y=-2x2+40 x,(0 x20),当x12m时,菜园的面积为:,Y=-2x2+40 x-2122+4012 192(m2),生活问题数学化,在实践中感悟 横看成岭侧成峰,远近高低各不同 变换角度分析问题 若函数y=x2m+n 2xm-n+3是以x为自变量的二次函数,求m、n的值。,2m+n=2m-n=1,m=1 n=0,2m+n=1m-n=2,m=1n=-1,2m+n=2 m-n=2,m=4/3n=-2/3,2m+n=2m-n=0,m=2/3n=-4/3,2m+n=0m-n=2,m=2/3n=2/3,一次函数y=ax+b(a 0),其中包括正比例函数y=kx(k0),反比例函数y=(k0)二次函数y=ax2+bx+c(a0).,小结:,现在我们学习过的函数有:,可以发现,这些函数的名称都反映了函数表达式与自变量的关系.,