欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    探索勾股定理(2)(张琦).doc

    • 资源ID:4536765       资源大小:280.51KB        全文页数:5页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    探索勾股定理(2)(张琦).doc

    解解课 题:§1.1.2 探索勾股定理(二)教学目标:1.学会用拼图的方法验证勾股定理。2.运用勾股解决一些实际问题.3.培养学生的创新能力和解决实际问题的能力.CABD第1题教学重点:勾股定理的证明及其应用.教学难点:勾股定理的证明.教学方法:教师引导和学生自主探索相结合的方法.教学过程 一回看练习:如图,等腰ABC中,ABAC,DE垂直平分AB,若AB=20,BD=12,DC_;若DBC的周长为20,ABC的周长为32,则AB=_二引入新课师我们可以看出用拼图的方法推证数学中的结论非常直观.上一节课我们已经通过数格子通过一些特例大胆地猜想出了勾股定理.同时又利用一些特例验证了勾股定理,但我们注意到我们不可能拿所有的直角三角形一一验证,靠一些特例归纳、猜想出来的结论不一定正确.因此我们需要用另一种方法说明直角三角形三边的关系.1拼一拼 (1)在一张硬纸板上画4个如右图所示全等的直角三角形.并把它们剪下来.(2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用它说明勾股定理吗?2归纳生1我拼出了如下图所示的图形,中间是一个边长为c的正方形.观察图形我们不难发现,大的正方形的边长是(a+b).要利用这个图说明勾股定理,我们只要用两种方法表示这个大正方形的面积即可.大正方形面积可以表示为:(a+b)2,又可以表示为:ab×4+(ba).对比这两种表示方法,可得出c2=ab×4+(ba).化简、整理得c2=a2+b2.因此我们得到了勾股定理.生2我拼出了和这个同学不一样的图,如下图所示,大正方形的边长是c,小正方形的边长为ba,利用这个图形也可以说明勾股定理.因为大正方形的面积也有两种表示方法,既可以表示为c2,又可以表示为ab×4+(ba)2.对比两种表示方法可得c2=ab×4+(ba)2.化简得c2=a2+b2.同样得到了勾股定理.在所有的几何定理中,勾股定理的证明方法也许是最多的了.有人做过统计,说有五百余种.1940年,国外有人收集了勾股定理的365种证法,编了一本书.其实,勾股定理的证法不止这些,作者之所以选用了365种,也许他是幽默地想让人注意,勾股定理的证明简直到了每天一种的地步.2.试一试:(1)如下图所示.这就是这位总统用两个全等的直角三角形拼出的图形,你能证明吗?生上面的图形整体上拼成一个直角梯形.所以它的面积有两种表示方法.既可以表示为(a+b)·(a+b),又可以表示为ab×2+c2.对比两种表示方法可得 (a+b)·(a+b)= ab×2+c2.化简,可得a2+b2=c2.3.议一议(1)前面我们讨论了直角三角形三边满足的关系.那么锐角三角形或钝角三角形的三边是否也满足这一关系呢?观察上图,用数格子的方法判断图中两个三角形的三边关系是否满足a2+b2=c2.(2)归纳:我发现在钝角三角形ABC中,虽然a2+b2c2,但它们之间也有一种关系a2+b2c2;在锐角三角形ABC中,a2+b2c2.它们恒成立.三精讲精练1飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?2如下图所示,某人在B处通过平面镜看见在B正上方5米处的A物体,已知物体A到平面镜的距离为6米,问B点到物体A的像A的距离是多少?3在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来;水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少? 1分析:根据题意,可以画出右图,A点表示男孩头顶的位置,C、B点是两个时刻飞机的位置,C是直角,可以用勾股定理来解决这个问题.解:根据题意,得RtABC中,C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2.即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000米=504千米,即飞机飞行的速度为504千米/时.2分析:此题要用到勾股定理,轴对称及物理上的光的反射知识.解:如例2图,由题意知ABA是直角三角形,由轴对称及平面镜成像可知:AA=2×6=12米,AB=5米;在RtAAB中,AB2=AA2+AB2=122+52=169=132米所以AB=13米,即B点到物体A的像A的距离为13米.3分析:在此问题中,要注意水草的长度与水深的关系,还要注意水草站立时和吹到一边,它的长度是不变的.解:根据题意,得到下图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BCAD.所以在RtACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36.6AC=27,AC=4.5.所以八这里的水深为4.5分米.

    注意事项

    本文(探索勾股定理(2)(张琦).doc)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开