佛山中考题型—阅读题(几何的定义、性质、判定).doc
-
资源ID:4536311
资源大小:191.01KB
全文页数:5页
- 资源格式: DOC
下载积分:10金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
佛山中考题型—阅读题(几何的定义、性质、判定).doc
佛山中考题型阅读题(几何的定义、性质、判定)班级: 姓名: 学号: 1、我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;探究一:我们已经学习了平行四边形和菱形; 1)写出菱形的定义: 2)写出菱形的(不重复)性质:1 2 3 4 并证明4条性质的其中两条3)写出菱形的(不重复)判定:1 2 3 4 并证明4条性质的其中两条探究二:由以上知识你能否探索下梯形和等腰梯形?1)定义:梯形是指只有一组对边平行的四边形。平行的两边叫做梯形的底边,在下面且较长的一条底边叫下底,在上面且较短的一条底边叫上底。另外两边叫腰;夹在两底之间的垂线段叫梯形的高。两腰相等的梯形叫等腰梯形。等腰梯形是特殊的梯形;2)写出等腰梯形的(不重复)性质:1 2 3 4 并证明4条性质的其中两条3)写出等腰梯形的(不重复)判定:1 2 3 并证明4条性质的其中两条探究三:(2011年佛山市)阅读材料;请解决以下问题:如图,我们把满足、且的四边形叫做“筝形”;(1) 写出筝形的两个性质(定义除外);(2) 写出筝形的两个判定方法(定义除外),并选出一个进行证明;备用图1(写判定方法用)备用图1(证明判定方法用)备用图1(写性质用)2、(2013年佛山市)我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,ABCD第25题图黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识已知平行四边形ABCD,A=60°,AB=2a,AD=a(1) 把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个(2) 图中关于边、角和对角线会有若干关系或问题现在请计算两条对角线的长度要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长解:在表格中作答分割图形 分割或图形说明示例ABCD第25题图示例分割成两个菱形。两个菱形的边长都为a,锐角都为60°。ABCD第25题图ABCD第25题图ABCD第25题图(2)3、(2013宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形如菱形就是和谐四边形(1)如图1,在梯形ABCD中,ADBC,BAD=120°,C=75°,BD平分ABC求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点ABC均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,BAD=90°,AC是四边形ABCD的和谐线,求BCD的度数以下为候选宁波12年25. (本题10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形。如图1,ABCD中,若AB=1,BC=2,则ABCD为1阶准菱形。(1)判断与推理:邻边长分别为2和3的平行四边形是 阶准菱形;小明为了剪去一个菱形,进行如下操作:如图2,把ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE。请证明四边形ABEF是菱形。(2)操作、探究与计算:已知ABCD是邻边长分别为1,a(a1),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;已知ABCD的邻边长分别为a,b(ab),满足a=6b+r,b=5r,请写出ABCD是几阶准菱形。三角形的中位线和梯形中位线作为阅读的延伸23(2012滨州)我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”类似的,我们把连接梯形两腰中点的线段叫做梯形的中位线如图,在梯形ABCD中,ADBC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证明你的结论5