欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    北师大八年级上勾股定理题型总结.doc

    • 资源ID:4525790       资源大小:506KB        全文页数:9页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师大八年级上勾股定理题型总结.doc

    二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:1阴影部分是正方形;2阴影部分是长方形;3阴影部分是半圆2. 如图,以RtABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系3、如下图,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是 A. S1- S2= S3 B. S1+ S2= S3 C. S2+S3< S1 D. S2- S3=S14、四边形ABCD中,B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。5、在直线上依次摆放着七个正方形如图4所示。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、=_考点二:在直角三角形中,已知两边求第三边1在直角三角形中,假设两直角边的长分别为5cm,12cm ,则斜边长为 2已知直角三角形的两边长为3、4,则另一条边长的平方是 3、已知直角三角形两直角边长分别为6和8, 求斜边上的高 4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的 A 2倍B 4倍C 6倍D 8倍5、在RtABC中,C=90°假设a=5,b=12,则c=_;假设a=15,c=25,则b=_;假设c=61,b=60,则a=_;假设ab=34,c=10则RtABC的面积是=_。6、如果直角三角形的两直角边长分别为,2nn>1,那么它的斜边长是 A、2n B、n+1 C、n21 D、7、在RtABC中,a,b,c为三边长,则以下关系中正确的选项是 A. B. C. 8、已知RtABC中,C=90°,假设a+b=14cm,c=10cm,则RtABC的面积是 A、24B、36 C、48D、609、已知x、y为正数,且x2-4+y2-32=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为 A、5B、25 C、7D、15 考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,是底边上的高,假设,求 AD的长;ABC的面积考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题1、以下各组数据中的三个数,可作为三边长构成直角三角形的是 A. 4,5,6 B. 2,3,4 C. 11,12,13 D. 8,15,172、假设线段a,b,c组成直角三角形,则它们的比为 A、234 B、346 C、51213 D、4673、下面的三角形中:ABC中,C=AB;ABC中,A:B:C=1:2:3;ABC中,a:b:c=3:4:5;ABC中,三边长分别为8,15,17其中是直角三角形的个数有 A1个 B2个 C3个 D4个4、假设三角形的三边之比为,则这个三角形一定是 5、已知a,b,c为ABC三边,且满足(a2b2)(a2+b2c2)0,则它的形状为6、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形7、假设ABC的三边长a,b,c满足试判断ABC的形状。8、ABC的两边分别为5,12,另一边为奇数,且a+b+c是3的倍数,则c应为 ,此三角形为 。例3:求1假设三角形三条边的长分别是7,24,25,则这个三角形的最大内角是 度。2已知三角形三边的比为1:2,则其最小角为 。考点五:应用勾股定理解决楼梯上铺地毯问题某楼梯的侧面视图如图3所示,其中AB=5,BC=3米, ,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为        、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗? ABC 2、一架长的梯子,斜立在一竖起的墙上,梯子底端距离墙底如图,如果梯子的顶端沿墙下滑,那么梯子底端将向左滑动 米3、如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑2米,那么,梯子底端的滑动距离 米. 4、在一棵树10 m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?60120140B60AC第5题图75、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸单位:mm计算两圆孔中心A和B的距离为 .6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米7、如图18-15所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,问:登陆点A处到宝藏埋藏点B处的直线距离是多少?考点七:折叠问题1、如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将ABC折叠,使点B与点A重合,折痕为DE,则CD等于 A. B. C. D. 2、如下图,已知ABC中,C=90°,AB的垂直平分线交BC于M,交AB于N,假设AC=4,MB=2MC,求AB的长3、折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求CF 和EC。ABCEFD4、如图,在长方形ABCD中,DC=5,在DC边上存在一点E,沿直线AE把ADE折叠,使点D恰好在BC边上,设此点为F,假设ABF的面积为30,求折叠的AED的面积5、如图,矩形纸片ABCD的长AD=9,宽AB=3,将其折叠,使点D与点B重合,那么折叠后DE的长是多少?6、如图,在长方形ABCD中,将ABC沿AC对折至AEC位置,CE与AD交于点F。1试说明:AF=FC;2如果AB=3,BC=4,求AF的长7、如图2所示,将长方形ABCD沿直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C的位置上,已知AB=3,BC=7,重合部分EBD的面积为_9、如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。如果M为CD边的中点,求证:DE:DM:EM=3:4:5。10、如图,长方形ABCD中,AB=3,BC=4,假设将该矩形折叠,使C点与A点重合,则折叠后痕迹EF的长为 A3.74 B3.75 C考点八:应用勾股定理解决勾股树问题1、 如下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为 2、已知ABC是边长为1的等腰直角三角形,以RtABC的斜边AC为直角边,画第二个等腰RtACD,再以RtACD的斜边AD为直角边,画第三个等腰RtADE,依此类推,第n个等腰直角三角形的斜边长是 考点九、图形问题1、如图1,求该四边形的面积 2、如图2,已知,在ABC中,A = 45°,AC = ,AB = +1,则边BC的长为 3、某公司的大门如下图,其中四边形是长方形,上部是以为直径的半圆,其中=2.3,=2,现有一辆装满货物的卡车,高为2.5,宽为1.6,问这辆卡车能否通过公司的大门?并说明你的理由. 4、将一根长24的筷子置于地面直径为5,高为12的圆柱形水杯中,设筷子露在杯子外面的长为h,则h的取值范围 。5、如图,铁路上A、B两点相距25km,C、D为两村庄,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站多少千米处?考点十、航海问题1、一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距_海里2、如图,某货船以24海里时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上。该货船航行30分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁,假设继续向正东方向航行,该货船有无暗礁危险?试说明理由。 3、如图,某沿海开放城市A接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?考点十一、网格问题1、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是 A0 B1 C2 D32、如图,正方形网格中的ABC,假设小方格边长为1,则ABC是 A.直角三角形 3、如图,小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )A 25 B. 12.5 C. 9 4、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按以下要求画三角形:使三角形的三边长分别为3、在图甲中画一个即可;使三角形为钝角三角形且面积为4在图乙中画一个即可

    注意事项

    本文(北师大八年级上勾股定理题型总结.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开