欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    北师大九级上册平行四边形的判定.ppt

    • 资源ID:4517723       资源大小:899KB        全文页数:17页
    • 资源格式: PPT        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    北师大九级上册平行四边形的判定.ppt

    北师大九年级上册,平行四边形的判定,问题1,怎样的四边形是平行四边形呢?,两组对边分别平行的四边形叫做平行四边形,问题2,平行四边形具有什么样的性质呢?,边,平行四边形的对边平行,平行四边形的对边相等,角,平行四边形的对角相等,平行四边形的邻角互补,对角线,平行四边形的对角线互相平分,温故知新,平行四边形的性质,我们知道了平行四边形的性质,那么,有哪些方法可以判断一个四边形是平行四边形呢?(1)根据定义:两组对边分别平行的四边形叫做平行四边形,因为AB/CD,AD/BC;所以四边形ABCD是平行四边形。,问题3,根据平行四边形性质得到如下猜想:,猜想1:两组对边分别相等的四边形是平行四边形.,猜想2:两组对角分别相等的四边形是平行四边形.,猜想3:两条对角线互相平分的四边形是平行四边形.,猜想4:一组对边平行且相等的四边形是平行四边形.,问题4,你能利用公理和已有的定理证明这些猜想吗?,得到平行四边形的判定:两组对边分别相等的四边形是平行四边形.,求证:两组对边分别相等的四边形是平行四边形.,已知:如图,在四边形ABCD中,AB=CD,BC=DA.,求证:四边形ABCD是平行四边形.,分析:要证明四边形ABCD是平行四边形.可转化证明两组对边分别平行,从而作辅助线,用全等三角形来证明相应的角相等.,证明:连接AC.,AB=CD,BC=DA,AC=CA,ABCCDA(SSS).,1=2,3=4.,ABCD,CBAD.,四边形ABCD是平行四边形.,得到平行四边形的判定:一组对边平行且相等的四边形是平行四边形.,求证:一组对边平行且相等的四边形是平行四边形.,已知:如图,在四边形ABCD中ABCD,AB=CD.,求证:四边形ABCD是平行四边形.,分析:要证明四边形ABCD是平行四边形.可转化证明两组对边分别相等,从而作辅助线,用全等三角形来证明相应的边相等.,证明:连接AC.,ABCD,1=2.,AB=CD,AC=CA,ABCCDA(SAS).,四边形ABCD是平行四边形.,BC=DA.,你还有不同的证法吗?,得到平行四边形的判定:对角线互相平分的四边形是平行四边形.,定理:对角线互相平分的四边形是平行四边形.,已知:如图,在四边形ABCD中,对角线AC,BD相交于点O,CO=AO,BO=DO.,求证:四边形ABCD是平行四边形.,证明:,CO=AO,BO=DO,1=2,AODCOB(SAS).,3=4.,ADCB.,同理,ABCD.,四边形ABCD是平行四边形.,分析:要证明四边形ABCD是平行四边形.可转化证明两组对边分别平行,从而用全等三角形来证明相应的角相等.,你还有几种不同的证法?,得到平行四边形的判定:两组对角分别相等的四边形是平行四边形的.,定理:两组对角分别相等的四边形是平行四边形的.,已知:如图,在四边形ABCD中,A=C,B=D.,求证:四边形ABCD是平行四边形.,分析:要证明四边形ABCD是平行四边形.可转化证明两组对边分别平行.从而转化为相关的角关系来证明.,证明:A=C,B=D,A+C+B+D=3600.,A+B=1800.,ADBC.,2A+2B=3600.,同理,ABCD.,四边形ABCD是平行四边形.,通过以上的证明,我们得到的关于平行四边形判定的猜想是正确的,于是有了如下判定定理:,判定定理1:两组对边分别相等的四边形是平行四边形.判定定理2:两组对角分别相等的四边形是平行四边形.判定定理3:两组对角线互相平分的四边形是平行四边形.判定定理4:一组对边平行且相等的四边形是平行四边形.,想一想,小明有一个猜想:有一组对边平行,另一组对边相等的四边形是平行四边形.你能证明他的猜想是否成立?,小红也有一个猜想:有一组对边相等,一组对角相等的四边形是平行四边形.你能证明她的猜想是否成立?,已知:如图.,求证:四边形MNOP是平行四边形.,分析:这是一道综合性题目,利用勾股定理,方程和平行四边形的判定进行计算性推理可获证.,证明:,四边形MNPO是平行四边形.,例题选讲,MON=90,已知:如图,在ABCD中,BF=DE.,求证:四边形AFCE是平行四边形.,分析:由已知的平行四边形和BF=DE可知,CE=AF,则转化为利用一组对边平行且相等来证明.,证明:,DCAB,DC=AB,DE=CF,CE=AF,四边形AFCE是平行四边形.,四边形ABCD是平行四边形,你还有几种不同的证法,随堂练习,定理:两组对边分别相等的四边形是平行四边形.,定理:一组对边平行且相等的四边形是平行四边形.,AB=CD,AD=BC,四边形ABCD是平行四边形.,ABCD,AB=CD,四边形ABCD是平行四边形.,平行四边形的判定,平行四边形的判定,定理:对角线互相平分的四边形是平行四边形.,定理:两组对角分别相等的四边形是平行四边形.,AO=CO,BO=DO,四边形ABCD是平行四边形.,A=C,B=D.四边形ABCD是平行四边形.,知识的升华,P88习题3.2 1,2,3题.祝你成功!,驶向胜利的彼岸,谢谢,

    注意事项

    本文(北师大九级上册平行四边形的判定.ppt)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开