其他种类的传感器.ppt
1,第一节 光纤传感器第二节 气敏传感器第三节 湿度传感器,第六章 其他种类的传感器,2,光纤传感器(FOS Fiber Optical Sensor)是20世纪70年代中期发展起来的一种基于光导纤维的新型传感器。它是光纤和光通信技术迅速发展的产物,它与以电为基础的传感器有本质区别。光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质。因此,它同时具有光纤及光学测量的特点。电绝缘性能好。抗电磁干扰能力强。非侵入性。高灵敏度。容易实现对被测信号的远距离监控。光纤传感器可测量位移、速度、加速度、液位、应变、压力、流量、振动、温度、电流、电压、磁场等物理量,第一节光纤传感器,3,一、光导纤维导光的基本原理 光是一种电磁波,一般采用波动理论来分析导光的基本原理。然而根据光学理论指出:在尺寸远大于波长而折射率变化缓慢的空间,可以用“光线”即几何光学的方法来分析光波的传播现象,这对于光纤中的多模光纤是完全适用的。为此,采用几何光学的方法来分析。,1、斯乃尔定理(Snells Law)当光由光密物质(折射率大)入射至光疏物质时发生折射,如图(a),其折射角大于入射角,即n1n2时,ri。,可见,入射角i增大时,折射角r也随之增大,且始终ri。,n1、n2、r、i之间的数学关系为,n1sini=n2sinr,4,当ii0并继续增大时,r90,这时便发生全反射现象,如图(c),其出射光不再折射而全部反射回来。,式中:i0临界角,i0=arcsin(n2/n1),sini0=n2/n1,sinrsin901,当r=90时,i仍90,此时,出射光线沿界面传播如图(b),称为临界状态。这时有,5,2、光纤结构分析光纤导光原理,除了应用斯乃尔定理外还须结合光纤结构来说明。光纤呈圆柱形,它由玻璃纤维芯(纤芯)和玻璃包皮(包层)两个同心圆柱的双层结构组成。,纤芯位于光纤的中心部位,光主要在这里传输。纤心折射率n1比包层折射率n2稍大些两层之间形成良好的光学界面,光线在这个界面上反射传播。,n2,n1,纤芯,包层,光纤结构,6,3、光纤导光原理及数值孔径NA入射光线AB与纤维轴线OO相交角为i,入射后折射(折射角为j)至纤芯与包层界面C点,与C点界面法线DE成k角,并由界面折射至包层,CK与DE夹角为r。则,n0sini=n1sinj n1sink=n2sinr sini=(n1/n0)sinj sink=(n2/n1)sinr 因j=90k 所以,j,i,k,r,A,B,C,D,E,F,G,K,O,O,n0,n2,n1,光纤导光示意图,n0为入射光线AB所在空间的折射率,一般为空气,故n1,nl为纤芯折射率,n2为包层折射率。当n=1时,7,上式sini0为“数值孔径”NA(NumericalAperture)。由于n1与n2相差较小,即n1+n22n1,故又可因式分解为,=(n1-n2)/n1称为相对折射率差,当r=90的临界状态时,i=i0,当rNA,iarcsin NA,光线消失。这说明arcsinNA是一临界角,凡入射角iarcsinNA的那些光线进入光纤都不能传播而在包层消失;相反,只有入射角iarcsinNA的光线才可进入光纤被全反射传播,当r=90时,当r90时,光线发生全反射,则,sini0=NA i0=arcsin NA,ii0=arcsin NA,8,二、光纤传感器结构原理及分类 1、光纤传感器结构原理以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成,见图(b)。,光纤,信号处理,光接收器,敏感元件,光发送器,(b)光纤传感器,信号处理,电 源,信号接收,敏感元件,(a)传统传感器,导线,由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。,9,可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机电测量为基础,而光纤传感器则以光学测量为基础。光是一种电磁波,其波长从极远红外的lmm到极远紫外线的10nm。它的物理作用和生物化学作用主要因其中的电场而引起。因此,讨论光的敏感测量必须考虑光的电矢量E的振动,即A电场E的振幅矢量;光波的振动频率;光相位;t光的传播时间。可见,只要使光的强度、偏振态(矢量A的方向)、频率和相位等参量之一随被测量状态的变化而变化,或受被测量调制,那么,通过对光的强度调制、偏振调制、频率调制或相位调制等进行解调,获得所需要的被测量的信息。,10,传感器,光学现象,被测量,光纤,分类,干涉型,相位调制光线传感器,干涉(磁致伸缩)干涉(电致伸缩)Sagnac效应光弹效应干涉,电流、磁场电场、电压角速度振动、压力、加速度、位移温度,SM、PMSM、PMSM、PMSM、PMSM、PM,aaaaa,非干涉型,强度调制光纤温度传感器,遮光板遮断光路半导体透射率的变化荧光辐射、黑体辐射光纤微弯损耗振动膜或液晶的反射气体分子吸收光纤漏泄膜,温度、振动、压力、加速度、位移温度温度振动、压力、加速度、位移振动、压力、位移气体浓度液位,MMMMMMSMMMMMMM,bbbbbbb,偏振调制光纤温度传感器,法拉第效应泡克尔斯效应双折射变化光弹效应,电流、磁场电场、电压、温度振动、压力、加速度、位移,SMMMSMMM,b,abbb,频率调制光纤温度传感器,多普勒效应受激喇曼散射光致发光,速度、流速、振动、加速度气体浓度温度,MMMMMM,cbb,注:MM多模;SM单模;PM偏振保持;a,b,c功能型、非功能型、拾光型,2、光纤传感器的分类,11,(1)根据光纤在传感器中的作用光纤传感器分为功能型、非功能型和拾光型三大类。1)功能型(全光纤型)光纤传感器利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作传感元件,将“传”和“感”合为一体的传感器。光纤不仅起传光作用,而且还利用光纤在外界因素(弯曲、相变)的作用下,其光学特性(光强、相位、偏振态等)的变化来实现“传”和“感”的功能。因此,传感器中光纤是连续的。由于光纤连续,增加其长度,可提高灵敏度。,信号处理,光受信器,光纤敏感元件,光发送器,12,2)非功能型(或称传光型)光纤传感器光纤仅起导光作用,只“传”不“感”,对外界信息的“感觉”功能依靠其他物理性质的功能元件完成。光纤不连续。此类光纤传感器无需特殊光纤及其他特殊技术,比较容易实现,成本低。但灵敏度也较低,用于对灵敏度要求不太高的场合。,3)拾光型光纤传感器 用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。其典型例子如光纤激光多普勒速度计、辐射式光纤温度传感器等。,信号处理,光受信器,光发送器,光纤,耦合器,被测对象,13,(2)根据光受被测对象的调制形式形式:强度调制型、偏振调制、频率调制、相位调制。1)强度调制型光纤传感器 是一种利用被测对象的变化引起敏感元件的折射率、吸收或反射等参数的变化,而导致光强度变化来实现敏感测量的传感器。有利用光纤的微弯损耗;各物质的吸收特性;振动膜或液晶的反射光强度的变化;物质因各种粒子射线或化学、机械的激励而发光的现象;以及物质的荧光辐射或光路的遮断等来构成压力、振动、温度、位移、气体等各种强度调制型光纤传感器。优点:结构简单、容易实现,成本低。缺点:受光源强度波动和连接器损耗变化等影响较大。,14,2)偏振调制光纤传感器 是一种利用光偏振态变化来传递被测对象信息的传感器。有利用光在磁场中媒质内传播的法拉第效应做成的电流、磁场传感器;利用光在电场中的压电晶体内传播的泡尔效应做成的电场、电压传感器;利用物质的光弹效应构成的压力、振动或声传感器;以及利用光纤的双折射性构成温度、压力、振动等传感器。这类传感器可以避免光源强度变化的影啊,因此灵敏度高。3)频率调制光纤传感器 是一种利用单色光射到被测物体上反射回来的光的频率发生变化来进行监测的传感器。有利用运动物体反射光和散射光的多普勒效应的光纤速度、流速、振动、压力、加速度传感器;利用物质受强光照射时的喇曼散射构成的测量气体浓度或监测大气污染的气体传感器;以及利用光致发光的温度传感器等。,15,4)相位调制传感器 其基本原理是利用被测对象对敏感元件的作用,使敏感元件的折射率或传播常数发生变化,而导致光的相位变化,使两束单色光所产生的干涉条纹发生变化,通过检测干涉条纹的变化量来确定光的相位变化量,从而得到被测对象的信息。通常有利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器以及利用光纤赛格纳克(Sagnac)效应的旋转角速度传感器(光纤陀螺)等。这类传感器的灵敏度很高。但由于须用特殊光纤及高精度检测系统,因此成本高。,16,三、光纤传感器的应用(一)温度的检测 光纤温度传感器有功能型和传光型两种。,1、遮光式光纤温度计 下图为一种简单的利用水银柱升降温度的光纤温度开关。可用于对设定温度的控制,温度设定值灵活可变,1,2,3,4,水银柱式光纤温度开关,1 浸液 2 自聚焦透镜 3 光纤 4 水银,17,下图为利用双金属热变形的遮光式光纤温度计。当温度升高时,双金属片的变形量增大,带动遮光板在垂直方向产生位移从而使输出光强发生变化。这种形式的光纤温度计能测量1050的温度。检测精度约为0.5。它的缺点是输出光强受壳体振动的影响,且响应时间较长,一般需几分钟。,光源,接收,热双金属式光纤温度开关,1,2,1 遮光板 2 双金属片,18,2、透射型半导体光纤温度传感器 当一束白光经过半导体晶体片时,低于某个特定波长g的光将被半导体吸收,而高于该波长的光将透过半导体。这是由于半导体的本征吸收引起的,g称为半导体的本征吸收波长。电子从价带激发到导带引起的吸收称为本征吸收。当一定波长的光照射到半导体上时,电子吸收光能从价带跃迁入导带,显然,要发生本征吸收,光子能量必须大于半导体的禁带宽度Eg,即,因c/v,则产生本征吸收条件,h 普朗克常数;v 光频率,因此,对于波长大于g的光,能透过半导体,而波长小于g的光将被半导体吸收。不同种类的半导体材料具有不同的本征吸收波长,图为在室温(20)时,120m厚的GaAs材料的透射率曲线。,19,由图看出,GaAs在室温时的本征吸收波长约为880nm左右,半导体的吸收光谱与Eg有关,而半导体材料的Eg随温度的不同而不同,Eg与温度t的关系可表示为,式中:Eg(0)绝对零度时半导体的禁带宽度;经验常数(eVK);经验常数(K)。,850,800,900,950,1000,0,10,20,30,40,t=20,波长/nm,GaAs的光谱透射率曲线,透射率(%),对于GaAs材料,由实验得到,=5.810-4eV/K=300K,20,由此可见,半导体材料的Eg随温度上升而减小,亦即其本征吸收波长g随温度上升而增大。反映在半导体的透光特性上,即当温度升高时,其透射率曲线将向长波方向移动。若采用发射光谱与半导体的g(t)相匹配的发光二极管作为光源,如图,则透射光强度将随着温度的升高而减小。,21,(二)压力的检测 种类:强度调制型、相位调制型和偏振调制型三类。1、采用弹性元件的光纤压力传感器利用弹性体的受压变形,将压力信号转换成位移信号,从而对光强进行调制。因此,只要设计好合理的弹性元件及结构,就可以实现压力的检测。下图为简单的利用Y形光纤束的膜片反射型光纤压力传感器。在Y形光纤束前端放置一感压膜片,当膜片受压变形时,使光纤束与膜片间的距离发生变化,从而使输出光强受到调制。,膜片反射式光纤压力传感器示意图,光源,接收,1,2,1 Y形光纤束 2 壳片 3 膜片,3,P,22,弹性膜片材料是恒弹性金属,如殷钢、铍青铜等。但金属材料的弹性模量有一定的温度系数,因此要考虑温度补偿。若选用石英膜片,则可减小温度的影响。膜片的安装采用周边固定,焊接到外壳上。对于不同的测量范围,可选择不同的膜片尺寸。一般膜片的厚度在0.05mm0.2mm之间为宜。对于周边固定的膜片,在小挠度(y0.5t,t为膜片厚度)的条件下,膜片的中心挠度y为,R膜片有效半径;t膜片厚度;p外加压力;E膜片材料的弹性模量;为膜片的泊松比。,可见,在一定范围内,膜片中心挠度与所加的压力呈线性关系。若利用Y形光纤束检测位移特性的线性区,则传感器的输出光功率亦与待测压力呈线性关系。这种传感器结构简单、体积小、使用方便,但如果光源不稳定或长期使用后膜片的反射率下降,影响其精度。,23,改进型的膜片反射式光纤压力传感器的结构如图(a),这里采用了特殊结构的光纤束,光纤束的一端分成三束,其中一束为输入光纤,两束为输出光纤。三束光纤在另一端结合成一束,并且在端面成同心环排列分布,如图(b)。其中最里面一圈为输出光纤束1,中间一圈为输入光纤束,外面一圈为输出光纤束2。当压差为零时,膜片不变形,反射到两束输出光纤的光强相等,即I1I2。当膜片受压变形后,使得处于里面一圈的光纤束,接收到的反射光强减小,而处于外面一圈的光纤束2接到的反射光强增大,形成差动输出。,4,(a)传感器结构,(b)探头截面结构,(c)测量原理,2(外圈),1(内圈),I1,I0,I2,I1,I0,I2,I1,I0,I2,3(输入),24,可见,输出光强比I2Il与膜片的反射率、光源强度等因素均无关,因而可有效地消除这些因素的影响。将上式两边取对数且满足(Ap)21时,等式右边展开后取第一项,得到这表明待测压力与输出光强比的对数呈线性关系。因此,若将I1、I2检出后分别经对数放大后,再通过减法器即可得到线性的输出。若选用的光纤束中每根光纤的芯径为70m,包层厚度为3.5m,纤芯和包层折射率分别为1.52和1.62,则该传感器可获得115dB的动态范围,线性度为0.25。采用不同的尺寸、材料的膜片,即可获得不同的测量范围。,两束输出光的光强之比为,A与膜片尺寸、材料及输入光纤束数值孔径等有关的常数;p待测量压力。,25,2、光弹性式光纤压力传感器 晶体在受压后其折射率发生变化,呈现双折射的现象称为光弹性效应。利用光弹性效应测量压力的原理及传感器结构如图。发自LED的入射光经起偏器后成为直线偏振光。当有与入射光偏振方向呈45的压力作用于晶体时,使晶体呈双折射从而使出射光成为椭圆偏振光,由检偏器检测出与入射光偏振方向相垂直方向上的光强,即可测出压力的变化。其中1/4波长板用于提供一偏置,使系统获得最大灵敏度。,(b)传感器结构,1,2,3,4,5,P,(a)检测原理,P,6,7,8,9,10,11,1 光源 2、8 起偏器 3、9 1/4波长板 4、10 光弹性元件5、11 检偏器 6 光纤 7 自聚焦透镜,偏振光,线偏振光,椭圆偏振光,26,为了提高传感器的精度和稳定性,下图为另一种检测方法的结构。输出光用偏振分光镜分别检测出两个相互垂直方向的偏振分量;并将这两个分量经“差和”电路处理,即可得到与光源强度及光纤损耗无关的输出。该传感器的测量范围为103Pa106Pa,精度为1,理论上分辨力可达1.4Pa。这种结构的传感器在光弹性元件上加上质量块后,也可用于测量振动、加速度。,输出,前置,放大,前置,放大,I2I1,I2+I1,驱动,1,2,3,4,5,6,I1,I2,PD1,PD2,光弹性式光纤压力传感器的另一种结构,1 光纤 2 起偏器 3 光弹性元件 4 1/4波长板 5 偏振分光镜 6 反射镜,p,27,(三)液位、流量、流速的检测1、液位的检测技术(1)球面光纤液位传感器,1,2,(a)探头结构,(b)检测原理,空气,液体,LED,PD,光由光纤的一端导入,在球状对折端部一部分光透射出去,而另一部分光反射回来,由光纤的另一端导向探测器。反射光强的大小取决于被测介质的折射率。被测介质的折射率与光纤折射率越接近,反射光强度越小。显然,传感器处于空气中时比处于液体中时的反射光强要大。因此,该传感器可用于液位报警。若以探头在空气中时的反射光强度为基准,则当接触水时反射光强变化6dB7dB,接触油时变化25dB30dB。,28,(2)斜端面光纤液位传感器 下图为反射式斜端面光纤液位传感器的两种结构。同样,当传感器接触液面时,将引起反射回另一根光纤的光强减小。这种形式的探头在空气中和水中时,反射光强度差约在20dB以上。,斜面反射式光纤液位传感器,(a),1,2,3,(b),1、2 光纤 3 棱镜,29,(3)单光纤液位传感器 单光纤液位传感器的结构如图,将光纤的端部抛光成45的圆锥面。当光纤处于空气中时,入射光大部分能在端部满足全反射条件而返回光纤。当传感器接触液体时,由于液体的折射率比空气大,使一部分光不能满足全反射条件而折射入液体中,返回光纤的光强就减小。利用X形耦合器即可构成具有两个探头的液位报警传感器。同样,若在不同的高度安装多个探头,则能连续监视液位的变化。,单光纤液位传感器结构,1,2,1 光纤 2 耦合器,30,上述探头在接触液面时能快速响应,但在探头离开液体时,由于有液滴附着在探头上,故不能立即响应。为了克服这个缺点,可将探头的结构作一些改变,如图。将光纤端部的尖顶略微磨平,并镀上反射膜。这样,即使有液体附着在顶部,也不影响输出跳变。进一步的改进是在顶部镀反射膜外粘上一突出物,将附着的液体导引向突出物的下端。这样,可以保证探头在离开液位时也能快速地响应。,改进的光纤液位探头,31,2、流量、流速的检测(1)光纤涡街流量计 当一个非流线体置于流体中时,在某些条件下会在液流的下游产生有规律的旋涡。这种旋涡将会在该非流线体的两边交替地离开。当每个旋涡产生并泻下时,会在物体壁上产生一侧向力。这样,周期产生的旋涡将使物体受到一个周期的压力。若物体具有弹性,它便会产生振动,振动频率近似地与流速成正比。即 式中:v流体的流速;d物体相对于液流方向的横向尺寸;s与流体有关的无量纲常数。因此,通过检测物体的振动频率便可测出流体的流速。光纤涡街流量计便是根据这个原理制成的,其结构如图。,fsvd,32,纹稳定。当光纤振动时,输出光斑亦发生移动。对于处于光斑中某个固定位置的小型探测器,光斑花纹的移动反映为探测器接收到的输出光强的变化。利用频谱分析,即可测出光纤的振动频率。根据上式或实验标定得到流速值,在管径尺寸已知的情况下,即可计算出流量。光纤涡街流量计特点:可靠性好,无任何可动部分和联接环节,对被测体流阻小,基本不影响流速。但在流速很小时,光纤振动会消失,因此存在一定的测量下限。,在横贯流体管道的中间装有一根绷紧的多模光纤,当流体流动时,光纤就发生振动,其振动频率近似与流速成正比。由于使用的是多模光纤,故当光源采用相干光源(如激光器)时,其输出光斑是模式间干涉的结果。当光纤固定时,输出光斑花,光源,频谱,分析记录,探测器,1,2,3,4,5,1 夹具2 密封胶3 液体流管4 光纤5 张力载荷,33,(2)光纤多普勒流速计 下图为利用光纤多普勒计来测量流体流速的原理。当待测流体为气体时,散射光将非常微弱,此时可采用大功率的Ar激光器(出射光功率为2W,=514.5nm)以提高信噪比。特点:非接触测量,不影响待测物体的流动状态。,光纤多谱勒流量计结构,探测器,频谱,分析仪,He-Ne激光器,1,2,3,4,5,6,7,8,1、3 分束器;2 反射镜;4 透镜;5 流体管道;6 窗口;7、8 光纤,