欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    2.3.1直线与平面垂直的判定.ppt

    • 资源ID:4515108       资源大小:878KB        全文页数:18页
    • 资源格式: PPT        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2.3.1直线与平面垂直的判定.ppt

    2.3.1直线与平面垂直的判定,(1)创设情境感知概念,1.线面垂直定义的建构,观察:直线与平面的位置关系,1.线面垂直定义的建构,(2)观察思考抽象概括,定义:如果直线l与平面内的任意一条直线都垂直,我们就说直线 l与平面互相垂直,记作:l.,直线l叫做平面的垂线,平面叫做直线l的垂面直线与平面垂直时,它们唯一的公共点P叫做垂足。,1.线面垂直定义的建构,(3)质疑反思深化定义,1.若一条直线垂直于平面内的无数条直线,则直线和平面垂直.,思考:我们该如何检验学校广场上的旗杆是否与地面垂直?,问题1.某同学想运用直线与平面垂直的定义来检验可行吗?问题2.某同学类比直线与平面平行的判定定理,觉得“如果一条直线与平面内的一条直线垂直,那么这条直线与平面垂直”对吗?问题3.某同学提出“若一条直线与平面内的两条直线垂直,那么这条直线与平面垂直”对吗?,如何检验学校广场上的旗杆是否与地面垂直?,要求:1.独立思考后小组讨论,共3分钟2.小组推选一人或两人将结论依次向大家交流.3.对小组出现的问题可以向大家交流并说明你们是怎么解决问题的,操作演示最好.,2.线面垂直判定定理的探究,(2)动手操作确认定理,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个实验:过ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,(BD、DC与桌面接触).观察并思考:,(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?此时AD与BC是什么关系?翻折之后AD与CD,AD与BD是什么关系?(3)由此你能得到什么结论?,要求:1.独立思考后小组讨论,共4分钟2.小组推选一人(或两人)将问题的结论在台前依次向大家交流,并操作演示(可找助手帮忙操作),将组内成员出现的情况向大家说明,并点明你们是如何解决的,2.线面垂直判定定理的探究,(3)合情推理概括定理,直线与平面垂直的判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。,山不在高,有仙则名;,线不在多,相交就行.,2.线面垂直判定定理的探究,(4)类比反思深化定理,问题1.与直线与平面垂直的定义比,你觉得判定定理的优越性在哪?,问题2.你觉得定义与判定定理的共同点是什么?,思考:我们该如何检验学校广场上的旗杆是否与地面垂直?,3.线面垂直判定定理的应用,2.如图,在正方体ABCD-A1B1C1D1中,(1)请列举与平面ABCD垂直的直线;,(2)请列举与直线A1A垂直的平面;,3.线面垂直判定定理的应用,3.例题.在四面体A-BCD中,ABAC,DBDC,M为BC中点,求证:BC面AMD,要求:1.独立思考后1-2分钟台前交流2.交流的时候注意先说明解题的思路,然后详细说明解题步骤.,3.线面垂直判定定理的应用,1.如图,点P是平行四边形ABCD所在平面外一点,O是对角线AC与BD的交点,且PA=PC,PB=PD.求证:PO平面ABCD,4.【学生练习】,2.思考题已知:PA,PB,垂足分别是A、B,且=l.求证:(1)l平面APB.(2)lAB,P,小结:,从知识和方法两个方面进行,知识方面:线面垂直的定义、线面垂直的判定定理,方法方面:转化思想,学习数学的方法就是观察再观察,思考再思考。-华罗庚,

    注意事项

    本文(2.3.1直线与平面垂直的判定.ppt)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开