欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    双曲线及其标准方程 (2).ppt

    • 资源ID:4474659       资源大小:1.90MB        全文页数:17页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    双曲线及其标准方程 (2).ppt

    如果我是双曲线,你就是那渐近线如果我是反比例函数,你就是那坐标轴虽然我们有缘,能够生在同一个平面然而我们又无缘,漫漫长路无交点为何看不见,等式成立要条件难到正如书上说的,无限接近不能达到为何看不见,明月也有阴晴圆缺此事古难全,但愿千里共婵娟,悲伤双曲线,巴西利亚大教堂,北京摩天大楼,法拉利主题公园,花瓶,罗兰导航系统原理,全球卫星定位导航系统,反比例函数的图像,冷却塔,2.3.1双曲线及其标准方程,画双曲线,演示实验:用拉链画双曲线,思考:1.在作图的过程中哪些量是定量?哪些量是不定量?2.动点在运动过程中满足什么条件?3.这个常数与|F1F2|的关系是什么?4.动点运动的轨迹是什么?5.若拉链上被固定的两点互换,则出现什么情况?,动画演示,如图(A),,|MF1|-|MF2|=|F2F|=2a,如图(B),,上面 两条合起来叫做双曲线,由可得:,|MF1|-|MF2|=2a(差的绝对值),|MF2|-|MF1|=|F1F|=2a,根据实验及椭圆定义,你能给双曲线下定义吗?,两个定点F1、F2双曲线的焦点;,|F1F2|=2c 焦距.,平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2)的点的轨迹叫做双曲线.,双曲线定义,|MF1|-|MF2|=常数(小于|F1F2|),探究:,(1)已知A(-5,0),B(5,0),M点到A,B两点的距离之差为8,则M点的轨迹是什么?,(2)已知A(-5,0),B(5,0),M点到A,B两点的距离之差的绝对值为10,则M点的轨迹是什么?,(3)已知A(-5,0),B(5,0),M点到A,B两点的距离之差的绝对值为12,则M点的轨迹是什么?,双曲线的一支,动点M的轨迹是分别以点A,B为端点,方向指向AB外侧的两条射线,不存在,(4)已知A(-5,0),B(5,0),M点到A,B两点的距离之差的绝对值为0,则M点的轨迹是什么?,线段AB的垂直平分线,?,4)在双曲线的定义描述中要注意:差的绝对值、常数小于|F1F2|及常数大于0这三个条件,2)当常数大于|F1F2|时,动点M的轨迹不存在,1)当常数等于|F1F2|时,动点M的轨迹是以点F1、F2为端点,方向指向F1F2外侧的两条射线,3)若常数等于0时,轨迹是线段F1F2的垂直平分线,感悟:,双曲线标准方程推导,求曲线方程的步骤:,以F1,F2所在的直线为x轴,线段F1F2的中点为原点建立直角坐标系,2.设点,设M(x,y),则F1(-c,0),F2(c,0),3.限式,|MF1|-|MF2|=2a,5.化简,1.建系,.,4.代换,代数式化简得:,因为三角形F2MF1的两边之差必小于第三边,所以2a0,于是令:c2-a2=b2,代入上式得:b2x2-a2y2=a2b2,其中C2=a2+b2,此即为焦点在x轴上的双曲线的标准方程,问题:如何判断双曲线的焦点在哪个轴上?,练习:写出以下双曲线的焦点坐标,(二次项系数为正,焦点在相应的轴上),F(c,0),F(0,c),若建系时,焦点在y轴上呢?,F(c,0),F(c,0),a0,b0,但a不一定大于b,c2=a2+b2,ab0,a2=b2+c2,双曲线与椭圆之间的区别与联系,|MF1|MF2|=2a,|MF1|+|MF2|=2a,F(0,c),F(0,c),例1、已知双曲线的焦点为F1(-5,0),F2(5,0)双曲线上一点到焦点的距离差的绝对值等于6,则(1)a=_,c=_,b=_,(2)双曲线的标准方程为_,(3)双曲线上一点,|PF1|=10,则|PF2|=_,3,5,4,4或16,例2:如果方程 表示双曲线,求m的取值范围.,小结-双曲线定义及标准方程,|MF1|-|MF2|=2a(2a|F1F2|),F(c,0)F(0,c),

    注意事项

    本文(双曲线及其标准方程 (2).ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开