平行四边形课件 (2).ppt
人教版第九册数学,猜想一:平行四边形的面积可以用两条邻边的长度相乘。,猜想二:平行四边形的面积可以用底和高相乘。,5厘米,5厘米,4厘米,验证猜想一:两条邻边长度相等的两个平行四形的面积不相等,说明猜想一错误。,沿高剪开,向右平移,平行四边形的面积推导过程,验证方法二:割补法,我们沿平行四边形的 剪下,通过 _ 的方法,把它转化成一个。这个图形的面积与原来平行四边形的面积。长方形的 和平行四边形的 相等,长方形的 和平行四边形的 相等。因为长方形的面积=所以平行四边形的面积=,高,平移,长方形,相等,长,底,宽,高,长宽,底高,平行四边形的面积=底高,S,a,h,平行四边形的底=面积高,平行四边形的高=面积底,你能求出这两块地的面积吗?,第一关,4米,5分米,4厘米,1.5米,4米,3.6分米,5分米,4厘米,口算下面每个平行四边形的面积。,3厘米,43=12(平方厘米),53.6=18(平方分米),41.5=6(平方米),4分米,第二关:判断 看谁反应快,平行四边形底越长,它的面积就越大。()平行四边形的面积用它的高乘对应的底。(),两个等底等高的平行四边形它们的面积 相等。(),3厘米,两个平行四边形的面积相等,它们的形状一定也相同。(),4厘米,5,第三关:计算下面图形的面积。,第四关:画一画,请同学们在方格纸上画出一个面积是24cm2的平行四边形,看谁画得又对又快。,第五关:想一想 学校里有一块草地,想在草地的一边修一条小路通向另一边,下面有三种设计方案,你认为那种设计方案的面积最小?为什么?你想选哪个方案呢?又为什么呢?,谢谢!再见,