双曲线的简单几何性质(1).ppt
,o,Y,X,关于X,Y轴,原点对称,(a,0),(0,b),(c,0),A1A2;B1B2,|x|a,|y|b,F1,F2,A1,A2,B2,B1,复习 椭圆的图像与性质,2、对称性,一、研究双曲线 的简单几何性质,1、范围,关于x轴、y轴和原点都是对称。,x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。,(-x,-y),(-x,y),(x,y),(x,-y),课堂新授,3、顶点,(1)双曲线与对称轴的交点,叫做双曲线的顶点,4、离心率,离心率。,ca0,e 1,(1)定义:,(2)e的范围:,(3)等轴双曲线,5、渐近线,求下列双曲线的渐近线方程(1)4x29y2=36,(2)25x24y2=100.,2x3y=0,5x2y=0,能不能直接由双曲线方程推出渐近线方程?,结论:,焦点在x轴上的双曲线的几何性质,双曲线标准方程:,Y,X,1、,范围:,xa或x-a,2、对称性:,关于x轴,y轴,原点对称。,3、顶点:,A1(-a,0),A2(a,0),4、轴:实轴 A1A2 虚轴 B1B2,A1,A2,B1,B2,5、渐近线方程:,6、离心率:,e=,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(-a,0),A2(a,0),A1(0,-a),A2(0,a),关于x轴、y轴、原点对称,渐进线,F2(0,c)F1(0,-c),如何记忆双曲线的渐进线方程?,例1:求双曲线,的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。,解:把方程化为标准方程,可得:实半轴长a=4,虚半轴长b=3,半焦距c=,焦点坐标是(0,-5),(0,5),离心率:,渐近线方程:,例题讲解,1.求经过两点P 和Q 的双曲线方程.,