秋八上数学:第14章《整式的乘法与因式分解》全章教案.doc
-
资源ID:4295500
资源大小:653.50KB
全文页数:22页
- 资源格式: DOC
下载积分:16金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
秋八上数学:第14章《整式的乘法与因式分解》全章教案.doc
第十四章整式的乘法与因式分解141整式的乘法141.1同底数幂的乘法1理解同底数幂的乘法法则2运用同底数幂的乘法法则解决一些实际问题重点正确理解同底数幂的乘法法则难点正确理解和应用同底数幂的乘法法则一、提出问题,创设情境复习an的意义:an表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?师能否用我们学过的知识来解决这个问题呢?生运算次数运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.师1015×103如何计算呢?生根据乘方的意义可知1015×103(10×10××10)15个10×(10×10×10)(10×10××10)18个101018.师很好,通过观察大家可以发现1015、103这两个因数是同底数幂的形式,所以我们把像1015,103的运算叫做同底数幂的乘法根据实际需要,我们有必要研究和学习这样的运算同底数幂的乘法二、探究新知1做一做(出示投影片)计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n.(m,n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述师根据乘方的意义,同学们可以独立解决上述问题生(1)25×22(2×2×2×2×2)×(2×2)27252.因为25表示5个2相乘,22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2(a·a·a)(a·a)a5a32.5m·5n(5×5··5),sdo4(m个5)×(5×5··5),sdo4(n个5)5mn.生我们可以发现下列规律:am·an等于什么(m,n都是正整数)?为什么?(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和2议一议(出示投影片)师生共析am·an表示同底数幂的乘法根据幂的意义可得:am·an(a×a··a)m个a·(a×a··a)n个aa·a··a(mn)个aamn于是有am·anamn(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”师请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则生am表示m个a相乘,an表示n个a相乘,am·an表示m个a相乘再乘以n个a相乘,也就是说有(mn)个a相乘,根据乘方的意义可得am·anamn.师也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加3例题讲解出示投影片例1计算:(1)x2·x5; (2)a·a6;(3)2×24×23; (4)xm·x3m1.例2计算am·an·ap后,能找到什么规律?师我们先来看例1,是不是可以用同底数幂的乘法法则呢?生1(1),(2),(4)可以直接用“ 同底数幂相乘,底数不变,指数相加”的法则生2(3)也可以,先算两个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了师同学们分析得很好请自己做一遍每组出一名同学板演,看谁算得又准又快生板演:(1)解:x2·x5x25x7;(2)解:a·a6a1·a6a16a7;(3)解:2×24×23214·2325·2325328;(4)解:xm·x3m1xm(3m1)x4m1.师接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法解法一:am·an·ap(am·an)·apamn·apamnp;解法二:am·an·apam·(an·ap)am·anpamnp;解法三:am·an·ap(a·aa)m个a·(a·aa)n个a·(a·aa)p个aamnp归纳:解法一与解法二都直接应用了运算法则,同时还运用了乘法的结合律;解法三是直接应用乘方的意义三种解法得出了同一结果我们需要这种开拓思维的创新精神生那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加师是的,能不能用符号表示出来呢?生am1·am2·am3·amnam1m2m3mn.师鼓励学生那么例1中的第(3)题我们就可以直接应用法则运算了2×24×23214328.三、随堂练习1m14可以写成()Am7m7 Bm7·m7Cm2·m7 Dm·m142若xm2,xn5,则xmn的值为()A7 B10 C25 D523计算:22×(2)2_;(x)(x2)(x3)(x4)_4计算:(1)(3)2×(3)5;(2)106·105·10;(3)x2·(x)5;(4)(ab)2·(ab)6.四、课堂小结师这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?生在探索同底数幂乘法的性质时,进一步体会了幂的意义,了解了同底数幂乘法的运算性质生同底数幂的乘法的运算性质是底数不变,指数相加应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即am·anamn(m,n是正整数)五、课后作业教材第96页练习本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加. 在课堂教学时,通过幂的意义引导学生得出这一性质,接着再引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想141.2幂的乘方1知道幂的乘方的意义2会进行幂的乘方计算重点会进行幂的乘方的运算难点幂的乘方法则的总结及运用一、复习引入(1)叙述同底数幂乘法法则,并用字母表示:(2)计算:a2·a5·an;a4·a4·a4.二、自主探究1思考:根据乘方的意义及同底数幂的乘法填空,看看计算结果有什么规律:(1)(32)332×32×323();(2)(a2)3a2·a2·a2a();(3)(am)3am·am·ama()(m是正整数)2小组讨论对正整数n,你认识(am)n等于什么?能对你的猜想给出验证过程吗?幂的乘方(am)nam·am·amamn个 ammmm,sup6(n个m) amn字母表示:(am)namn(m,n都是正整数)语言叙述:幂的乘方,底数不变,指数相乘注意:幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2的结果错误地写成a7,也不能把a5·a2的计算结果写成a10.三、巩固练习1下列各式的计算中,正确的是()A(x3)2x5B(x3)2x6C(xn1)2x2n1Dx3·x2x62计算:(1)(103)5; (2)(a4)4;(3)(am)2; (4)(x4)3.四、归纳小结幂的乘方的意义:(am)namn.(m,n都是正整数)五、布置作业教材第97页练习运用类比方法,得到了幂的乘方法则这样的设计起点低,学生学起来更自然,对新知识更容易接受类比是一种重要的数学思想方法,值得引起注意141.3积的乘方1经历探索积的乘方和运算法则的过程,进一步体会幂的意义2理解积的乘方运算法则,能解决一些实际问题重点积的乘方运算法则及其应用难点幂的运算法则的灵活运用一、问题导入师提出的问题:若已知一个正方体的棱长为1.1×103 cm,你能计算出它的体积是多少吗?生它的体积应是V(1.1×103)3 cm3.师这个结果是幂的乘方形式吗?生不是,底数是1.1与103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理师积的乘方如何运算呢?能不能找到一个运算法则?用前两节课的探究经验,请同学们自己探索,发现其中的奥妙二、探索新知老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳(出示投影片)1填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2(ab)·(ab)(a·a)·(b·b)a()b();(2)(ab)3_a()b();(3)(ab)n_a()b()(n是正整数)2把你发现的规律先用文字语言表述,再用符号语言表达3解决前面提到的正方体体积计算问题4积的乘方的运算法则能否进行逆运算呢?请验证你的想法5完成教材第97页例3.学生探究的经过:1(1)(ab)2(ab)·(ab)(a·a)·(b·b)a2b2,其中第步是用乘方的意义;第步是用乘法的交换律和结合律;第步是用同底数幂的乘法法则同样的方法可以算出(2),(3)题;(2)(ab)3(ab)·(ab)·(ab)(a·a·a)·(b·b·b)a3b3;(3)(ab)n(ab)·(ab)··(ab)n个aba·a··an个a·b·b··bn个banbn.2积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积用符号语言叙述便是:(ab)nan·bn.(n是正整数)3正方体的V(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:V(1.1×103)31.13×(103)31.13×103×31.13×1091.331×109(cm3)通过上述探究,我们可以发现积的乘方的运算法则:(ab)nan·bn.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘再考虑如下问题:(abc)n如何计算?是不是也有类似的规律?3个以上的因式呢?学生讨论后得出结论:三个或三个以上因式的积的乘方也具有这一性质,即(abc)nan·bn·cn.(n为正整数)4积的乘方法则可以进行逆运算即an·bn(ab)n.(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算对于an·bn(a·b)n(n为正整数)的证明如下:an·bn(a×a××a)n个a(b×b××b)n个b幂的意义(ab)(ab)(ab)(ab)(ab)n个(ab)乘法交换律、结合律(a·b)n乘方的意义5例3(1)(2a)323·a38a3;(2)(5b)3(5)3·b3125b3;(3)(xy2)2x2·(y2)2x2·y2×2x2·y4x2y4;(4)(2x3)4(2)4·(x3)416·x3×416x12.(学生活动时,老师深入到学生中,发现问题,及时启发引导,使各个层面的学生都能学有所获)师通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用可以作如下归纳总结:(1)积的乘方法则:积的乘方等于每一个因式乘方的积即(ab)nan·bn.(n为正整数)(2)三个或三个以上的因式的积的乘方也是具有这一性质如(abc)nan·bn·cn;(n为正整数)(3)积的乘方法则也可以逆用即an·bn(ab)n,an·bn·cn(abc)n.(n为正整数)三、随堂练习1教材第98页练习(由学生板演或口答)四、课堂小结(1)通过本节课的学习,你有什么新的体会和收获?(2)在应用积的运算性质计算时,你觉得应该注意哪些问题?五、布置作业(1)(2xy)3;(2)(5x3y)2;(3)(xy)23;(4)(0.5am3n4)2.本节课属于典型的公式法则课,从实际问题猜想主动推导探究理解公式应用公式公式拓展,整堂课体现以学生为本的思想。实际问题情境的设置,在于让学生感受到研究新问题的必要性,带着问题思考本节课,更容易理解重点、突破难点141.4整式的乘法(4课时)第1课时单项式乘单项式和单项式乘多项式1探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算2会进行整式的混合运算重点单项式与单项式、单项式与多项式相乘的运算法则及其应用难点灵活地进行单项式与单项式、单项式与多项式相乘的运算一、复习导入1知识回顾:回忆幂的运算性质:am·anamn(m,n都是正整数),即同底数幂相乘,底数不变,指数相加(am)namn(m,n都是正整数),即幂的乘方,底数不变,指数相乘(ab)nanbn(n为整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘口答:幂的三个运算性质是学习单项式与单项式、单项式与多项式乘法的基础,所以先组织学生对上述的内容作复习2练一练(a2)2_;(23)2_;()23_;(a3)2·a3_;23·25_;(xy2)2_;()5()5_二、探究新知问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米?注:从实际的问题导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识,从而构建新的知识体系地球与太阳的距离约为(3×105)×(5×102)千米问题是(3×105)×(5×102)等于多少呢?学生提出运用乘法交换律和结合律可以解决:(3×105)×(5×102)(3×5)×(105×102)15×107(为什么?)在此处再问学生更加规范的书写是什么?应该是地球与太阳的距离约为1.5×108千米请学生回顾,我们是如何解决问题的问题:如果将上式中的数字改为字母,即ac5·bc2,你会算吗?学生独立思考,小组交流注:从特殊到一般,从具体到抽象,在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则学生分析:跟刚才的解决过程类似,可以将ac5和bc2分别看成a·c5和b·c2,再利用乘法交换律和结合律ac5·bc2(a·c5)·(b·c2)(a·b)·(c5·c2)abc52abc7.注:在教学过程中注意运用类比的方法来解决实际问题探究一类似地,请你试着计算:(1)2c5·5c2;(2)(5a2b3)·(b2c)ac5和bc2,2c5和5c2,(5a2b3)和(4b2c)都是单项式,通过刚才的尝试,谁能告诉大家怎样进行单项式乘法?注:先不给出单项式与单项式相乘的运算法则,而是让学生类比,自己动手试一试,再相互交流,自己小结出如何进行单项式的乘法要求学生用语言叙述这个性质,这对于学生提高数学语言的表述能力是有益的学生小结:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式3算一算例1:教材例4.在例题教学中应该先让学生观察有哪些运算,如何利用运算性质和法则分析后再动手做,同时让学生说一说每一步的依据提醒学生在单项式的运算中应该先确定符号例2小民的步长为a米,他量得家里卧室长15步,宽14步,这间卧室的面积有多少平方米?注:将运算法则应用在实际问题中,提高学生解决实际问题的能力4辩一辩教材第99页练习2.注:辩一辩的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算法则的掌握,同时也培养学生一定的批判性思维能力探究二1师生共同研究教材第99页的问题,对单项式与多项式相乘的方法能有感性认识注:这个实际问题来源于学生的实际,所以在教学中通过师生共同探讨,再结合分配律学习不难得到结论2试一试计算:2a2·(3a25b)(根据乘法分配律)注:因为整式的运算是在数的运算的基础上发展起来的,所以在解决问题时让学生类比数的运算律,将单项式乘以多项式转化为单项式的乘法,自己尝试得出结论3想一想从上面解决的两个问题中,谁能总结一下,怎样将单项式和多项式相乘?学生发言,互相补充后得出结论:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加4做一做教材例5.(在学习过程中提醒学生注意符号问题,多项式的每一项都包括它前面的符号)注:学生在计算过程中,容易出现符号问题,要特别提醒学生注意教材第100页练习三、课外巩固1必做题:教材第104105页习题14.1第3,4题2备选题:(1)若(5am1b2n1)(2anbm)10a4b4,则mn的值为_;(2)计算:(a3b)2·(a2b)3;(3)计算:(3a2b)2(2ab)(4a3b);(4)计算:(xy)·(xy22xyy)本节课采用引导发现法通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中第2课时多项式乘多项式经历探索多项式乘法法则的过程,理解多项式乘法法则,灵活运用多项式乘以多项式的运算法则重点多项式乘法的运算难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“负号”的问题一、情境导入教师引导学生复习单项式×多项式运算法则整式的乘法实际上就是:单项式×单项式;单项式×多项式;多项式×单项式组织讨论:问题为了扩大街心花园的绿地面积,把一块原长a m,宽p m的长方形绿地,加长了b m,加宽了q m你能用几种方法求出扩大后的绿地面积?如何计算?小组讨论,你从计算过程中发现了什么?由于(ab)(pq)和(apaqbpbq)表示同一个量,即有(ab)(pq)apaqbpbq.二、探索新知(一)探索法则根据乘法分配律,我们也能得到下面等式:在学生发言的基础上,教师总结多项式与多项式的乘法法则并板书法则让学生体会法则的理论依据:乘法对加法的分配律多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加(二)例题讲解与巩固练习1教材例6计算:(1)(3x1)(x2);(2)(x8y)(xy);(3)(xy)(x2xyy2)2计算下列各题:(1)(x2)(x3);(2)(a4)(a1);(3)(y)(y);(4)(2x4)(6x);(5)(m3n)(m3n);(6)(x2)2.3某零件如图所示,求图中阴影部分的面积S.练习点评:根据学生的具体情况,教师可选择其中几题,分析并板书示范,其余几题,可由学生独立完成在讲解、练习过程中,提醒学生对法则的灵活、正确应用,注意符号,不要漏乘注意一定要用第一个多项式的每一项依次去乘第二个多项式的每一项,在计算时要注意多项式中每个单项式的符号三、课堂小结指导学生总结本节课的知识点,学习过程的自我评价主要针对以下方面:1多项式×多项式2多项式与多项式的乘法用一个多项式中的每项乘另一个多项式的每一项,不要漏项在没有合并同类项之前,两个多项式相乘展开后的项数应是这两个多项式项数之积四、布置作业教材第102页练习题本节课由计算绿地面积出发,通过几种不同的计算图形面积方法,得出多项式相乘的法则,整个教学过程的主线和重点定在学生如何自主地探索多项式乘法法则的过程以及如何熟练运用法则解决问题,充分调动了学生学习的积极性教师不仅是教给学生知识,还要重视学习方法的指导和培养第3课时同底数幂相除1掌握同底数幂的除法的运算法则2会用同底数幂的除法的法则进行计算重点准确熟练地运用同底数幂的除法运算法则进行计算难点根据乘、除互逆的运算关系得出同底数幂的除法运算法则一、问题导入1叙述同底数幂的乘法运算法则同底数幂相乘,指数相加,底数不变即am·anamn.(m,n是正整数)2问题:一种数码照片的文件大小是28K,一个存储量为26M(1M210K)的移动存储器能存储多少张这样的数码照片?移动器的存储量单位与文件大小的单位不一致,所以要先统一单位移动存储器的容量为26×210216K.所以它能存储这种数码照片的数量为218÷28.218,28是同底数幂,同底数幂相除如何计算呢?二、探究新知请同学们做如下运算:1(1)28×28;(2)52×53;(3)102×105;(4)a3·a3.2填空:(1)()·28216;(2)()·5355;(3)()·105107;(4)()·a3a6.除法与乘法两种运算互逆,要求空内所填数,其实是一种除法运算,所以这四个小题等价于:(1)216÷28();(2)55÷53();(3)107÷105();(4)a6÷a3()再根据第1题的运算,我们很容易得到答案:(1)28;(2)52;(3)102;(4)a3.其实我们用除法的意义也可以解决,请同学们思考、讨论(1)216÷28(2)55÷53(3)107÷105 (4)a6÷a3从上述运算能否发现商与除数、被除数有什么关系?am÷anamn.(a0,m,n都是正整数,且mn)三、例题讲解例1(教材例7)计算:(1)x8÷x2;(2)(ab)5÷(ab)2.解:(1)x8÷x2x82x6;(2)(ab)5÷(ab)2(ab)52(ab)3a3b3.例2先分别利用除法的意义填空,再利用am÷anamn的方法计算,你能得出什么结论?(1)32÷32();(2)103÷103()(3)am÷am()(a0)解:先用除法的意义计算32÷321;103÷1031;am÷am1(a0)再利用am÷anamn的方法计算32÷3232230;103÷1031033100;am÷amamma0(a0)这样可以总结得a01(a0)于是规定:a01(a0),即任何不等于0的数的0次幂都等于1.四、课堂小结通过这节课的学习,你有哪些收获?师生共同总结:(1)同底数幂相除,底数不变,指数相减;(2)任何不等于0的数的0次幂都等于1.五、布置作业教材第104页练习第1题同底数幂的除法的主要内容是根据除法是乘法的逆运算,从计算具体的同底数的幂的除法,到计算底数具有一般性的字母,逐步归纳出同底数幂除法的法则,并运用法则熟练、准确地进行计算本节课是在学习了幂的乘方、积的乘方的基础上进行的,它们构成一个有机整体,为后续的整式除法的学习打下基础第4课时整式的除法1单项式除以单项式的运算法则及其应用2多项式除以单项式的运算法则及应用重点单项式除以单项式的运算法则及其应用;多项式除以单项式运算法则及其应用难点探索多项式与单项式相除的运算法则的过程一、情境导入问题:木星的质量约是1.90×1024吨,地球的质量约是5.08×1021吨,你知道木星的质量约是地球质量的多少倍吗?重点研究算式(1.90×1024)÷(5.98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型二、探究新知1探索法则(1)计算(1.90×1024)÷(5.98×1021),说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2.(3)你能根据(2)说说单项式除以单项式的运算法则吗?教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述2归纳法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式3应用新知(1)28x4y2÷7x3y;(2)5a5b3c÷15a4b.首先指明28x4y2与7x3y分别是被除式与除式,在这里省去了括号,对本例可以采用学生口述,教师板书的形式完成口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则4巩固新知教材第104页练习第2题学生自己尝试完成计算题,同桌交流5再探新知计算下列各式:(1)(ambm)÷m;(2)(a2ab) ÷a;(3)(12a36a23a)÷3a.说说你是怎样计算的还有什么发现吗?在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同6归纳法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加你能把这句话写成公式的形式吗?7解决问题计算:(1)(21x4y335x3y27x2y2)÷(7x2y);(2)(xy)2y(2xy)8x÷2x.幂的运算性质是整式除法的关键,符号仍是运算中的重要问题在此可由学生口答,要求学生说出式子每步变形的依据,并要求学生养成检验的习惯,利用乘除互为逆运算,检验商式的正确性8巩固提高教材第104页练习第3题利用投影仪反馈学生解题过程三、布置作业1必做题:教材第105页习题14.1第6题2备选题:下列计算是否正确?如不正确,应怎样改正?(1)4ab2÷2ab2b;(2)(14a32a2a)÷a14a22a.这节课可以说学生动的多,教师讲的少学生的主体地位体现的还算可以主要是以学生的活动为主的,基本符合新课改精神课堂上教师的指导提示基本到位,学生能够在教师的指导下进行活动,完成了教学任务142乘法公式142.1平方差公式1经历探索平方差公式的过程2会推导平方差公式,并能运用公式进行简单的运算重点平方差公式的推导和应用难点理解平方差公式的结构特征,灵活应用平方差公式一、设问引入探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?(1)(x1)(x1);(2)(m2)(m2);(3)(2x1)(2x1)引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括二、举例分析再举几个这样的运算例子让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报三、归纳概括计算(ab)(ab)让学生计算,归纳算式的特征,说明结果的形式然后,教师系统总结平方差公式平方差公式:(ab)(ab)a2b2.语言叙述:_教师引导学生归纳这个公式的一些特点:如公式左、右两边的结构,教给学生记忆公式的方法四、应用新知教材例1运用平方差公式计算:(1)(3x2)(3x2);(2)(x2y)(x2y)填表:(ab)(ab)aba2b2最后结果(3x2)(3x2)2(3x)222(x2y)(x2y)对本例的前面两个小题可以采用学生独立完成,然后抢答的形式;第二小题可采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算教材例2计算:(1)(y2)(y2)(y1)(y5);(2)102×98.此处仍先让学生独立思考,然后自主发言,口述解题思路,允许他们算法的多样化,然后通过比较,优化算法,达到简便计算的目的五、巩固练习教材第108页练习第1,2题第1题口述完成;第2题采用大组竞赛的形式进行,其中(1)(4)由两个大组完成,(2)(3)由另两个大组完成六、小结与作业谈一谈:你这节课有什么收获?作业:教材第112页习题14.2第1题平方差公式是特殊的整式的乘法,运用这一公式可以迅速而简捷地计算出符合公式的特征的多项式乘法的结果,运用公式计算一定要看是否符合公式的特征,这两个数分别是什么,公式中的字母a,b不仅可以代表具体的数字,字母,单项式,也可以代表多项式142.2完全平方公式1完全平方公式的推导及其应用2完全平方公式的几何解释重点完全平方公式的推导过程、结构特点、几何解释,灵活应用难点理解完全平方公式的结构特征,并能灵活应用公式进行计算一、复习引入你能列出下列代数式吗?(1)两数和的平方;(2)两数差的平方你能计算出它们的结果吗?二、探究新知你能发现它们的运算形式与结果有什么规律吗?引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括;举例:(1)(p1)2(p1)(p1)_;(2)(p1)2(p1)(p1)_;(3)(m2)2_;(4)(m2)2_通过几个这样的运算例子,让学生观察算式与结果间的结构特征归纳:公式(ab)2a22abb2(ab)2a22abb2语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍这两个公式叫做(乘法的)完全平方公式教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因还可以引导学生将(ab)2的结果用(ab)2来解释:(ab)2a(b)2a22a(b)(b)2a22abb2.三、举例应用1教材例3:运用完全平方公式计算:(1)(4mn)2;(2)(y)2.解:(1)(4mn)2(4m)22·(4m)·nn216m28mnn2;(2)(y)2y22·y·()2y2y.可由学生口答完成,教师多媒体展示结果,提高课堂效率2教材例4:运用完全平方公式计算:(1)1022(1002)210022×100×22210 000400410 404;(2)992(1001)210022×100×11210 00020019 801.此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性四、再探新知1现有下图所示三种规格的卡片各若干张,请你根据二次三项式a22abb2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:2你能根据下图说明(ab)2a22abb2吗?第1小题由小组合作共同完成拼图游戏,比一比哪个小组快?第2小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(ab)2a2b22b(ab)a22abb2.五、思考讨论(ab)2与(ab)2相等吗?(ab)2与(ba)2相等吗?(ab)2与a2b2相等吗?为什么?组织学生进行讨论,通过自主推导,互相合作交流,共同解决难题六、巩固拓展教材例5:运用乘法公式计算:(1)(x2y3)(x2y3);(2)(abc)2.解:(1)(x2y3)(x2y3)x(2y3)x(2y3)x2(2y3)2x2(4y212y9)x24y212y9;(2)(abc)2(ab)c2(ab)22(ab)cc2a22abb22ac2bcc2a2b2c22ab2ac2bc.讲解此例之前可先让学生自学教材第111页的“添括号法则”并完成教材第111页练习第1题然后给出例5题目,让学生思考选择哪个公式第(1)小题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a,b对照,其中2y3(2y3),故应运用平方差公式第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式在解此例的过程中,应注意边辩析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点七、课堂小结谈一谈:你对完全平方公式有了哪些认识?它与平方差公式有什么区别和联系?作业:教材第112页习题14.2第2题,第3题的(1)(3)(4),第4题在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,而不知道将几个式子联系起来看;有些学生则观察入微,表现出了较强的观察力教师要抓住这个契机,适当对学生进行学法指导对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提143因式分解143.1提公因式法