欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    二元一次不等式与简单的线性规划问题学案练案.doc

    • 资源ID:4279172       资源大小:365.50KB        全文页数:13页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    二元一次不等式与简单的线性规划问题学案练案.doc

    主备人张建民校对闫晓伟年级主任孙重社备课组长王宗芳课题 二元一次不等式与简单的线性规划问题课时考纲要求1.从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.学习重点.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决学习难点截距模型及应用问题自主梳理1二元一次不等式(组)表示的平面区域(1)判断不等式AxByC>0所表示的平面区域,可在直线AxByC0的某一侧的半平面内选取一个特殊点,如选原点或坐标轴上的点来验证AxByC的正负当C0时,常选用原点(0,0)对于任意的二元一次不等式AxByC>0(或<0),无论B为正值还是负值,我们都可以把y项的系数变形为正数,当B>0时,AxByC>0表示直线AxByC0_的区域;AxByC<0表示直线AxByC0_的区域(2)画不等式AxByC>0表示的平面区域时,其边界直线应为虚线;画不等式AxByC0表示的平面区域时,边界直线应为实线画二元一次不等式表示的平面区域,常用的方法是:直线定“界”、原点定“域”2线性规划的有关概念(1)线性约束条件由条件列出一次不等式(或方程)组(2)线性目标函数由条件列出一次函数表达式(3)线性规划问题:求线性目标函数在约束条件下的最大值或最小值问题(4)可行解:满足_的解(x,y)(5)可行域:所有_组成的集合(6)最优解:使_取得最大值或最小值的可行解3利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域(2)作出目标函数的等值线(3)确定最优解:在可行域内平行移动目标函数等值线,从而确定_自我检测1在平面直角坐标系中,若点(2,t)在直线x2y40的上方,则t的取值范围是_2不等式(x2y1)(xy3)0在坐标平面内表示的区域(用阴影部分表示)应是_(填序号)3设变量x,y满足约束条件则z3x2y的最大值为_4若实数x,y满足不等式组且xy的最大值为9,则实数m_.5已知,是方程x2ax2b0的两个根,且0,1,1,2,a,bR,则的最大值为_.探究点一不等式组表示的平面区域例1画出不等式组表示的平面区域,并回答下列问题:(1)指出x,y的取值范围;(2)平面区域内有多少个整点?变式迁移1在平面直角坐标系中,有两个区域M、N,M是由三个不等式y0,yx和y2x确定的;N是随t变化的区域,它由不等式txt1 (0t1)所确定设M、N的公共部分的面积为f(t),则f(t)_.探究点二求目标函数的最值例2设变量x,y满足约束条件则目标函数z4x2y的最大值为_变式迁移2设变量x,y满足约束条件则目标函数z3x4y的最大值和最小值分别为_和_数形结合求最值例(14分)变量x、y满足(1)设z4x3y,求z的最大值;(2)设z,求z的最小值;(3)设zx2y2,求z的取值范围【突破思维障碍】1求解目标函数不是直线形式的最值的思维程序是:2常见代数式的几何意义主要有以下几点:(1)表示点(x,y)与原点(0,0)的距离;表示点(x,y)与点(a,b)的距离(2)表示点(x,y)与原点(0,0)连线的斜率;表示点(x,y)与点(a,b)连线的斜率1在直角坐标系xOy内,已知直线l:AxByC0与点P(x0,y0),若Ax0By0C>0,则点P在直线l上方,若Ax0By0C<0,则点P在直线l下方2在直线l:AxByC0外任意取两点P(x1,y1)、Q(x2,y2),若P、Q在直线l的同一侧,则Ax1By1C与Ax2By2C同号;若P、Q在直线l异侧,则Ax1By1C与Ax2By2C异号,这个规律可概括为“同侧同号,异侧异号”3线性规划解决实际问题的步骤:分析并将已知数据列出表格;确定线性约束条件;确定线性目标函数;画出可行域;利用线性目标函数(直线)求出最优解;实际问题需要整数解时,应适当调整,以确定最优解练案1若点(3,1)和(4,6)在直线3x2ya0的两侧,则实数a的取值范围是_2在平面直角坐标系xOy中,已知平面区域A(x,y)|xy1,且x0,y0,则平面区域B(xy,xy)|(x,y)A的面积为_3已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为(,1),则zxy的最大值为_4设变量x,y满足|x|y|1,则x2y的最大值和最小值分别为_5设不等式组表示的平面区域为D.若指数函数yax的图象上存在区域D上的点,则a的取值范围是_6已知实数x、y同时满足以下三个条件:xy20;x1;xy70,则的取值范围是_7设不等式组表示的平面区域为M,若函数yk(x1)1的图象经过区域M,则实数k的取值范围是_8.已知求:(1)zx2y4的最大值;(2)zx2y210y25的最小值;(3)z的范围备用及答案11(14分)预算用2 000元购买单件为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?5某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车某天需送往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元该公司合理计划当天派用两类卡车的车辆数,可得最大利润z等于_元二、解答题(共42分)9(14分)某营养师要为某个儿童预订午餐和晚餐已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?探究点三线性规划的实际应用例3某公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元甲、乙电视台的广告收费标准分别为500元/分和200元/分假定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?变式迁移3某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大时,甲车间加工原料_箱,乙车间加工原料_箱【答题模板】解由约束条件作出(x,y)的可行域如图所示由,解得A.由,解得C(1,1)由,解得B(5,2)5分(1)由z4x3y,得yx.当直线yx过点B时,最小,z最大zmax4×53×214.8分(2)z,z的值即是可行域中的点与原点O连线的斜率观察图形可知zminkOB.11分(3)zx2y2的几何意义是可行域上的点到原点O的距离的平方结合图形可知,可行域上的点到原点的距离中,dmin|OC|,dmax|OB|.2z29.14分学案33二元一次不等式与简单的线性规划问题答案1(1)上方下方2.(4)线性约束条件(5)可行解(6)目标函数3.(3)最优解自我检测1(1,)2.3.44.15.课堂活动区例1解题导引在封闭区域内找整点数目时,若数目较小时,可画网格逐一数出;若数目较大,则可分xm逐条分段统计解(1)不等式xy50表示直线xy50上及右下方的点的集合xy0表示直线xy0上及右上方的点的集合,x3表示直线x3上及左方的点的集合所以,不等式组表示的平面区域如图所示结合图中可行域得x,y3,8(2)由图形及不等式组知当x3时,3y8,有12个整点;当x2时,2y7,有10个整点;当x1时,1y6,有8个整点;当x0时,0y5,有6个整点;当x1时,1y4,有4个整点;当x2时,2y3,有2个整点;平面区域内的整点共有2468101242(个)变式迁移1t2t解析作出由不等式组组成的平面区域M,即AOE表示的平面区域,当t0时,f(0)×1×1,当t1时,f(1)×1×1,当0<t<1时,如图所示,所求面积为f(t)SAOESOBCSFDE×2×1t22(t1)2t2t,即f(t)t2t,此时f(0),f(1),综上可知f(t)t2t.例2解题导引1.求目标函数的最值,必须先准确地作出线性可行域再作出目标函数对应的直线,据题意确定取得最优解的点,进而求出目标函数的最值2线性目标函数zaxby取最大值时的最优解与b的正负有关,当b>0时,最优解是将直线axby0在可行域内向上平移到端点(一般是两直线交点)的位置得到的,当b<0时,则是向下方平移答案10解析画出可行域如图中阴影部分所示,目标函数z4x2y可转化为y2x,作出直线y2x并平移,显然当其过点A时纵截距最大解方程组得A(2,1),zmax10.变式迁移2311解析作出可行域如图所示目标函数yxz,则过B、A点时分别取到最大值与最小值易求B(5,3),A(3,5)zmax3×54×33,zmin3×34×511.例3解题导引解线性规划应用问题的一般步骤是:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答解设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,总收益为z元,百度文库 - 让每个人平等地提升自我由题意得目标函数为z3 000x2 000y.二元一次不等式组等价于作出二元一次不等式组所表示的平面区域,即可行域,如图所示作直线l:3 000x2 000y0,即3x2y0.平移直线l,从图中可知,当直线l过点M时,目标函数取得最大值由方程解得x100,y200.所以点M的坐标为(100,200)所以zmax3 000x2 000y700 000(元)答该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元变式迁移31555解析设甲车间加工原料x箱,乙车间加工原料y箱,由题意可知甲、乙两车间每天总获利为z280x200y.画出可行域如图所示点M(15,55)为直线xy70和直线10x6y480的交点,由图象知在点M(15,55)处z取得最大值课后练习区1(7,24)2.134解析由线性约束条件画出可行域如图所示,目标函数z·xy,将其化为yxz,结合图形可知,目标函数的图象过点(,2)时,z最大,将点(,2)的坐标代入zxy得z的最大值为4.42,2解析|x|y|1表示的平面区域如图阴影部分所示设zx2y,作l0:x2y0,把l0向右上和左下平移,易知:当l过点(0,1)时,z有最大值zmax02×12;当l过点(0,1)时,z有最小值zmin02×(1)2.54 900解析设当天派用甲型卡车x辆,乙型卡车y辆,由题意得设每天的利润为z元,则z450x350y.画出可行域如图阴影部分所示由图可知z450x350y50(9x7y),经过点A时取得最大值又由得即A(7,5)当x7,y5时,z取到最大值,zmax450×7350×54 900(元)6(1,37.8.9解设该儿童分别预订x,y个单位的午餐和晚餐,共花费z元,则z2.5x4y.(3分)可行域为即(8分)作出可行域如图所示:(12分)经试验发现,当x4,y3时,花费最少,为2.5×44×322(元)故应当为儿童分别预订4个单位的午餐和3个单位的晚餐(14分)10解作出可行域如图所示,并求出顶点的坐标A(1,3)、B(3,1)、C(7,9)(5分)(1)易知可行域内各点均在直线x2y40的上方,故x2y4>0,将点C(7,9)代入z得最大值为21.(8分)(2)zx2y210y25x2(y5)2表示可行域内任一点(x,y)到定点M(0,5)的距离的平方,过M作直线AC的垂线,易知垂足N在线段AC上,故z的最小值是|MN|2.(11分)(3)z2×表示可行域内任一点(x,y)与定点Q连线的斜率的两倍,因此kQA,kQB,故z的范围为.(14分)11解设桌子、椅子分别买x张、y把,目标函数zxy,(2分)把所给的条件表示成不等式组,即约束条件为(6分)由解得所以A点的坐标为.由解得所以B点的坐标为.(9分)所以满足条件的可行域是以A、B、O(0,0)为顶点的三角形区域(如图)(12分)由图形可知,目标函数zxy在可行域内的最优解为B,但注意到xN*,yN*,故取故买桌子25张,椅子37把是最好的选择(14分)

    注意事项

    本文(二元一次不等式与简单的线性规划问题学案练案.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开