欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    中考数学-高分攻略之几何部分.doc

    • 资源ID:4278856       资源大小:621KB        全文页数:35页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学-高分攻略之几何部分.doc

    中考数学 高分攻略之几何部分专题一:正方形知识考点:理解正方形的性质和判定,并能利用它进行有关的证明和计算。精典例题:【例1】如图,E、F分别是正方形ABCD的边AB、BC上的点,且EFAC,在DA的延长线上取一点G,使AGAD,EG与DF相交于点H。求证:AHAD。分析:因为A是DG的中点,故在DGH中,若AHAD,当且仅当DGH为直角三角形,所以只须证明DGH为直角三角形(证明略)。评注:正方形除了具备平行四边形的一般性质外,还特别注意其直角的条件。本例中直角三角形的中线性质使本题证明简单。 【例2】如图,在正方形ABCD中,P、Q分别是BC、CD上的点,若PAQ450,求证:PBDQPQ。分析:利用正方形的性质,通过构造全等三角形来证明。变式:若条件改为PQPBDQ,那么PAQ?你还能得到哪些结论?探索与创新:【问题一】如图,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过A作AGEB于G,AG交BD于点F,则OEOF,对上述命题,若点E在AC的延长线上,AGEB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,其它条件不变,则结论“OEOF”还成立吗?如果成立,请给出证明;如果不成立,说明理由。 分析:对于图1通过全等三角形证明OEOF,这种证法是否能应用到图2的情境中去,从而作出正确的判断。结论:(2)的结论“OEOF”仍然成立。提示:只须证明AOFBOE即可。评注:本题以正方形为背景,突破了单纯的计算与证明,着重考查了学生观察、分析、判断等多种能力。【问题二】操作,将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑行,直角的一边始终经过点B,另一边与射线DC相交于点Q。探究:设A、P两点间的距离为。(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的关系?试证明你观察得到的结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为,求与之间的函数关系式,并写出函数的定义域;(3)当点P在线段AC上滑行时,PCQ是否可能成为等腰三角形,如果可能,指出所有能使PCQ成为等腰三角形的点Q的位置,并求出相应的值;如果不可能,请说明理由(题目中的图形形状大小都相同,供操作用)。 分析:(1)实验猜测:PQPB,再利用正方形性质证明;(2)将四边形面积转化为三角形面积求;(3)可能。略解:(1)如图1,易证BPPD,12,PQD1800PQCPBCPDQ PBPDPQ (2)如图2,易证BOPPEQ QEPOAOAP (0) (3)PCQ可能成为等腰三角形。 当点P与点A重合时,点Q与点D重合,这时PQQC,PCQ是等腰三角形,此时0;当点Q在边DC的延长线上,且CPCQ时,PCQ是等腰三角形(如图3)。此时,QNPM,CNCP,所以CQQNCN,当时,解得。 评注:本题是一道新颖别致的好题,它考查学生实践操作能力和探究问题的能力。跟踪训练:一、填空题:1、给出下面三个命题:对角线相等的四边形是矩形;对角线互相垂直的四边形是菱形;对角线互相垂直的矩形是正方形。其中真命题是 (填序号)。2、如图,将正方形ABCD的BC边延长到E,使CEAC,AE与CD边相交于F点,那么CEFC 。 3、如图,把正方形ABCD沿着对角线AC的方向移动到正方形的位置,它们的重叠部分的面积是正方形ABCD面积的一半,若AC,则正方形移动的距离是 。4、四边形ABCD的对角线AC、BD相交于点O,给出以下题设条件:ABBCCDDA;AOBOCODO;AOCO,BODO,ACBD;ABBC,CDDA。其中能判断它是正方形的题设条件是 (把正确的序号填在横线上)。二、选择题:1、如图,把正方形ABCD的对角线AC分成段,以每一段为对角线作正方形,设这个小正方形的周长和为,正方形ABCD的周长为,则与的关系式是 。 A、 B、 C、 D、与无关2、如图,在正方形ABCD中,DEEC,CDE600,则下列关系式:1441;1311;(12)(34)53中,正确的是( ) A、 B、仅 C、仅和 D、仅和 3、如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,RtCEF的面积为200,则BE的值为( ) A、10 B、11 C、12 D、154、有若干张如图所示的正方形和长方形纸片,表中所列四种方案能拼成边长为的正方形的是( )数量(张) 卡片方案(1)(2)(3)A112B111C121D211三、解答题:1、如图,在正方形ABCD中,E是AD的中点,BD与CE交于F点,求证:AFBE。2、已知正方形ABCD中,M是AB的中点,E是AB延长线上一点,MNDM且交CBE的平分线于N。(1)求证:MDMN;(2)若将上述条件中的“M是AB的中点”改为“M是AB上任意一点”,其余条件不变,则结论“MDMN”还成立吗?如果成立,请证明;如果不成立,请说明理由。 3、如图,ABCD是正方形,P是对角线上的一点,引PEBC于E,PFDC于F。求证:(1)APEF;(2)APEF。 4、如图,过正方形ABCD的顶点B作BECA,作AEAC,又CFAE,求证:BCFAEB。跟踪训练参考答案一、填空题: 1、;2、;3、;4、二、选择题:CDCA三、解答题:1、易证ABFCFB和BAECDE,由ABFCFBAFBBFCFADDCE;由BAECDEDCEABF。所以DAFEAB,故EHAEAB900,AFBE。2、(1)如图1,取AD中点F,连结MF,由MNDM得DAM900,易证12,又因MNBNBE24502,DMFAFM14501,所以DMFMNB,又因DFBM,所以DMFMNB,故MDMN。 (2)成立,如图2,在AD上取DFMB,则易知:1900DMA,又2DMA900,12,又DMF4501,MNB4502,DMFMNB,又DFMB,DMFMNB,故MDMN。3、略证:延长AP与EF相交于点H,连结PC,因为BD是对角线,易证PAPC,12,根据PEBC于E,PFDC于F,知PECF为矩形,PCEF,且DAHFPH,又因为123,所以在PHF中,FPH341900,所以PHF为直角三角形,故APEF。4、提示:证AEFC是菱形,过A点作BE的垂线构造300角的直角三角形。专题二:梯形(1)与平行四边形一样,梯形也是一种特殊的四边形,其中等腰梯形与直角梯形占有重要地位,本讲就来研究它们的有关性质的应用例1 如图2-43所示在直角三角形ABC中,E是斜边AB上的中点,D是AC的中点,DFEC交BC延长线于F求证:四边形EBFD是等腰梯形分析 因为E,D是三角形ABC边AB,AC的中点,所以EDBF此外,还要证明(1)EB=DF;(2)EB不平行于DF证 因为E,D是ABC的边AB,AC的中点,所以EDBF又已知DFEC,所以ECFD是平行四边形,所以EC=DF 又E是RtABC斜边AB上的中点,所以EC=EB 由,EB=DF下面证明EB与DF不平行若EBDF,由于ECDF,所以有ECEB,这与EC与EB交于E矛盾,所以EBDF根据定义,EBFD是等腰梯形例2 如图2-44所示ABCD是梯形, ADBC, ADBC,AB=AC且ABAC,BD=BC,AC,BD交于O.求BCD的度数分析 由于BCD是等腰三角形,若能确定顶点CBD的度数,则底角BCD可求由等腰RtABC可求知斜边BC(即BD)的长又梯形的高,即RtABC斜边上的中线也可求出通过添辅助线可构造直角三角形,求出BCD的度数解 过D作DEEC于E,则DE的长度即为等腰RtABC斜边上的高AF设AB=a,由于ABF也是等腰直角三角形,由勾股定理知AF2+BF2=AB2,即又BC2=AB2+AC2=2AB2=2a2,由于BC=DB,所以,在RtBED中,从而EBD=30°(直角三角形中30°角的对边等于斜边一半定理的逆定理)在CBD中,例3 如图2-45所示直角梯形ABCD中,ADBC,A=90°,ADC=135°,CD的垂直平分线交BC于N,交AB延长线于F,垂足为M求证:AD=BF分析 MF是DC的垂直平分线,所以ND=NC由ADBC及ADC=135°知,C=45°,从而NDC=45°,DNC=90°,所以ABND是矩形,进而推知BFN是等腰直角三角形,从而AD=BN=BF证 连接DN因为N是线段DC的垂直平分线MF上的一点,所以ND=NC由已知,ADBC及ADC=135°知C=45°,从而NDC=45°在NDC中,DNC=90°(=DNB),所以ABND是矩形,所以AFND,F=DNM=45°BNF是一个含有锐角45°的直角三角形,所以BN=BF又AD=BN,所以 AD=BF例4 如图2-46所示直角梯形ABCD中,C=90°,ADBC,AD+BC=AB,E是CD的中点若AD=2,BC=8,求ABE的面积分析 由于AB=AD+BC,即一腰AB的长等于两底长之和,它启发我们利用梯形的中位线性质(这个性质在教材中是梯形的重要性质,我们将在下一讲中深入研究它,这里只引用它的结论)取腰AB的中点F,(或BC)过A引AGBC于G,交EF于H,则AH,GH分别是AEF与BEF的高,所以AG2=AB2-BG2=(8+2)2-(8-2)2=100-36=64,所以AG=8这样SABE(=SAEF+SBEF)可求解 取AB中点F,连接EF由梯形中位线性质知EFAD(或BC),过A作AGBC于G,交EF于H由平行线等分线段定理知,AH=GH且AH,GH均垂直于EF在RtABG中,由勾股定理知AG2=AB2-BG2=(AD+BC)2-(BC-AD)2 =102-62=82,所以 AG=8,从而 AH=GH=4,所以SABE=SAEF+SBEF例5 如图2-47所示四边形ABCF中,ABDF,1=2,AC=DF,FCAD(1)求证:ADCF是等腰梯形;(2)若ADC的周长为16厘米(cm),AF=3厘米,AC-FC=3厘米,求四边形ADCF的周长分析 欲证ADCF是等腰梯形归结为证明ADCF,AF=DC,不要忘了还需证明AF不平行于DC利用已知相等的要素,应从全等三角形下手计算等腰梯形的周长,显然要注意利用AC-FC=3厘米的条件,才能将ADC的周长过渡到梯形的周长解 (1)因为ABDF,所以1=3结合已知1=2,所以2=3,所以EA=ED又 AC=DF,所以 EC=EF所以EAD及ECF均是等腰三角形,且顶角为对顶角,由三角形内角和定理知3=4,从而ADCF不难证明ACDDFA(SAS),所以 AF=DC若AFDC,则ADCF是平行四边形,则AD=CF与FCAD矛盾,所以AF不平行于DC综上所述,ADCF是等腰梯形(2)四边形ADCF的周长=AD+DC+CF+AF 由于ADC的周长=AD+DC+AC=16(厘米), AF=3(厘米), FC=AC-3, 将,代入四边形ADCF的周长=AD+DC+(AC-3)+AF=(AD+DC+AC)-3+3=16(厘米)例6 如图2-48所示等腰梯形ABCD中,ABCD,对角线AC,BD所成的角AOB=60°,P,Q,R分别是OA,BC,OD的中点求证:PQR是等边三角形分析 首先从P,R分别是OA,OD中点知,欲证等边三角形PQR的边长应等于等腰梯形腰长之半,为此,只需证明QR,QP等于腰长之半即可注意到OAB与OCD均是等边三角形,P,R分别是它们边上的中点,因此,BPOA,CROD在RtBPC与RtCRB中,PQ,RQ分别是它们斜边BC(即等腰梯形的腰)的中线,因此,PQ=RQ=腰BC之半问题获解证 因为四边形ABCD是等腰梯形,由等腰梯形的性质知,它的同一底上的两个角及对角线均相等进而推知,OAB=OBA及OCD=ODC又已知,AC与BD成60°角,所以,ODC与OAB均为正三角形连接BP,CR,则BPOA,CROD在RtBPC与RtCRB中,PQ,RQ分别是它们的斜边BC上的中线,所以又RP是OAD的中位线,所以因为 AD=BC, 由,得PQ=QR=RP,即PQR是正三角形说明 本题证明引人注目之处有二:(1)充分利用特殊图形中特殊点所带来的性质,如正三角形OAB边OA上的中点P,可带来BPOA的性质,进而又引出直角三角形斜边中线PQ等于斜边BC之半的性质(2)等腰梯形的“等腰”就如一座桥梁“接通”了“两岸”的髀使PQR的三边相等 练习十三1如图2-49所示梯形ABCD中,ADBC,AB=AD=DC,BDCD求A的度数2如图2-50所示梯形ABCD中,ADBC,AEDC交BC于E,ABE的周长=13厘米,AD=4厘米求梯形的周长3如图2-51所示梯形ABCD中,ABCD,A+B=90°,AB=p,CD=q,E,F分别为AB,CD的中点求EF4如图2-52所示梯形ABCD中,ADBC,M是腰DC的中点,MNAB于N,且MN=b,AB=a求梯形ABCD的面积5已知:梯形ABCD中,DCAB,A=36°,B=54°,M,N分别是DC,AB的中点求证:专题二:梯形(2)知识考点:掌握梯形、直角梯形、等腰梯形的判定和性质,并能熟练解决实际问题。精典例题:【例1】如图,在梯形ABCD中,ABDC,中位线EF7,对角线ACBD,BDC300,求梯形的高AH。分析:根据对角线互相垂直,将对角线平移后可构造直角三角形求解。略解:过A作AMBD交CD的延长线于M。 ABDC,DMAB,AMCBDC300 又中位线EF7 CMCDDMCDAB2EF14 又ACBD, ACAM,ACCM7 AHCD,ACD600 AH 评注:平移梯形对角线、平移梯形的腰是解梯形问题时常用的辅助线。 【例2】如图,梯形ABCD中,ADBC,E、F分别是AD、BC的中点,BC900,AD7,BC15,求EF的长。分析:将AB、CD平移至E点构成直角三角形即可。答案:EF4探索与创新:【问题】已知,在梯形ABCD中,ADBC,点E在AB上,点F在DC上,且AD,BC。(1)如果点E、F分别为AB、DC的中点,求证:EFBC且EF;(2)如图2,如果,判断EF和BC是否平行?请证明你的结论,并用、的代数式表示EF。 分析:(2)根据(1)可猜想EFBC,连结AF并延长交BC的延长线于点M,利用平行线分线段成比例定理证明即可。略证:连结AF并延长交BC的延长线于点M ADBM, 在ABM中有 EFBC, EF 而,故 EF 评注:本题是一道探索型试题,其目的是考查学生观察、归纳、抽象、概括、猜想的能力,它要求学生能通过观察进行分析和比较,从特殊到一般去发现规律,并能概括地用数学公式表达出来。跟踪训练:一、填空题:1、梯形的上底长为3,下底长为7,梯形的中位线所分成的上下两部分的面积之比为 。2、等腰梯形中,上底腰下底123,则下底角的度数是 。3、如图,直角梯形ABCD中,ADBC,CD10,C600,则AB的长为 。 4、如图,梯形ABCD中,ABCD,D2B,AD,CD,那么AB的长是 。5、在梯形ABCD中,ADBC,AD2,BC3,BD4,AC3,则梯形ABCD的面积是 。6、如图,在等腰梯形ABCD中,ADBC,ABDC,CDBC,E是BA、CD延长线的交点,E400,则ACD 度。二、选择题:1、在课外活动课上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm2,则对角线所用的竹条至少需( ) A、cm B、30 cm C、60 cm D、 cm2、如图,直角梯形ABCD中,ABBC,AD1,BC3,CD4,EF为梯形的中位线,DH为梯形的高,下列结论:BCD600;四边形EHCF是菱形;以AB为直径的圆与CD相切于点F。其中正确的结论有( ) A、1个 B、2个 C、3个 D、4个 3、已知如图,梯形ABCD中,ADBC,B450,C1200,AB8,则CD的长为( ) A、 B、 C、 D、4、如图,在直角梯形ABCD中,底AB13,CD8,ADAB,并且AD12,则A到BC的距离为( )A、12 B、13 C、10 D、12×21135、如图,等腰梯形ABCD中,对角线ACBCAD则DBC的度数为( ) A、300 B、450 C、600 D、900三、解答题:1、如图,梯形ABCD中,ADBC,ABDC,在AB、DC上各取一点F、G,使BFCG,E是AD的中点。求证:EFGEGF。2、已知,在等腰ABC中,ABAC,AHBC于H,D是底边上任意一点,过D作BC的垂线交AC于M,交BA的延长线于N。求证:DMDN2AH。3、如图,等腰梯形ABCD中,ABCD,AB6,CD2,延长BD到E,使DEDB,作EFBA的延长线于点F,求AF的长。 4、如图,等腰梯形ABCD中,ABCD,对角线AC、BD相交于点O,ACD600,点S、P、Q分别是OD、OA、BC的中点。(1)求证:PQS是等边三角形;(2)若AB8,CD6,求的值。(3)若45,求CDAB的值。 5、如图,直角坐标系内的梯形AOBC,ACOB,AC、OB的长分别是关于的方程的两根,并且15。(1)求AC、OB的长;(2)当BCOC时,求OC的长及OC所在的直线解析式;(3)在第(2)问的条件下,线段OC上是否存在一点M,过M点作轴的平行线,交轴于F,交BC于D,过D点作轴的平行线交轴于E,使,若存在,请直接写出M点的坐标;若不存在,请说明理由。跟踪训练参考答案一、填空题:1、23;2、600;3、;4、;5、6;6、150二、选择题:CBAAC三;解答题:1、证AFEDEG;2、作AHMN于N,则MNMH,AHMHMD易证NHDMAH;3、24、(1)连结CS、BP;(2)SBDOOB11,CS,BC,SQ,;(3)设CD,AB,。,又,则,45,。整理得:,又,。即:。 5、(1)AC1,OB5;(2)C(1,2);(3)存在,(,1),(,)专题三:平行四边形平行四边形是一种极重要的几何图形这不仅是因为它是研究更特殊的平行四边形矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用由平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形例1 如图2-32所示在ABCD中,AEBC,CFAD,DN=BM求证:EF与MN互相平分分析 只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手证 因为ABCD是平行四边形,所以ADBC,ABCD,B=D又AEBC,CFAD,所以AECF是矩形,从而AE=CF所以RtABERtCDF(HL,或AAS),BE=DF又由已知BM=DN,所以BEMDFN(SAS),ME=NF 又因为AF=CE,AM=CN,MAF=NCE,所以MAFNCE(SAS),所以 MF=NF 由,四边形ENFM是平行四边形,从而对角线EF与MN互相平分例2 如图2-33所示RtABC中,BAC=90°,ADBC于D,BG平分ABC,EFBC且交AC于F求证:AE=CF分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系若作GHBC于H,由于BG是ABC的平分线,故AG=GH,易知ABGHBG又连接EH,可证ABEHBE,从而AE=HE这样,将AE“转移”到EH位置设法证明EHCF为平行四边形,问题即可获解证 作GHBC于H,连接EH因为BG是ABH的平分线,GABA,所以GA=GH,从而ABGHBG(AAS),所以 AB=HB 在ABE及HBE中,ABE=CBE,BE=BE,所以 ABEHBE(SAS),所以 AE=EH,BEA=BEH下面证明四边形EHCF是平行四边形因为ADGH,所以AEG=BGH(内错角相等) 又AEG=GEH(因为BEA=BEH,等角的补角相等),AGB=BGH(全等三角形对应角相等),所以AGB=GEH从而EHAC(内错角相等,两直线平行)由已知EFHC,所以EHCF是平行四边形,所以FC=EH=AE说明 本题添加辅助线GHBC的想法是由BG为ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与HBG继而发现ABEHBE,完成了AE的位置到HE位置的过渡这样,证明EHCF是平行四边形就是顺理成章的了人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的例3 如图2-34所示ABCD中,DEAB于E,BM=MC=DC求证:EMC=3BEM 分析 由于EMC是BEM的外角,因此EMC=B+BEM从而,应该有B=2BEM,这个论断在BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样B=MCF及BEM=F,因此, 只要证明MCF=2F即可不难发现,EDF为直角三角形(EDF=90°)及M为斜边中点,我们的证明可从这里展开证 延长EM交DC的延长线于F,连接DM由于CM=BM,F=BEM,MCF=B,所以MCFMBE(AAS),所以M是EF的中点由于ABCD及DEAB,所以,DEFD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知F=MDC,又由已知MC=CD,所以MDC=CMD,则MCF=MDC+CMD=2F从而EMC=F+MCF=3F=3BEM例4 如图2-35所示矩形ABCD中,CEBD于E,AF平分BAD交EC延长线于F求证:CA=CF分析 只要证明CAF是等腰三角形,即CAF=CFA即可由于CAF=45°-CAD,所以,在添加辅助线时,应设法产生一个与CAD相等的角a,使得CFA=45°-a为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明FCH=CAD证 延长DC交AF于H,显然FCH=DCE又在RtBCD中,由于CEBD,故DCE=DBC因为矩形对角线相等,所以DCBCDA,从而DBC=CAD,因此,FCH=CAD 又AG平分BAD=90°,所以ABG是等腰直角三角形,从而易证HCG也是等腰直角三角形,所以CHG=45°由于CHG是CHF的外角,所以CHG=CFH+FCH=45°,所以 CFH=45°-FCH 由,CFH=45°-CAD=CAF,于是在三角形CAF中,有CA=CF例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36)求证:分析 作BAF的平分线,将角分为1与2相等的两部分,设法证明DAE=1或2证 如图作BAF的平分线AH交DC的延长线于H,则1=2=3,所以FA=FH设正方形边长为a,在RtADF中,从而所以 RtABGRtHCG(AAS),从而RtABGRtADE(SAS),例6 如图2-37所示正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G求证:GHD是等腰三角形分析 准确地画图可启示我们证明GDH=GHD证 因为DEBC,所以四边形BCED为平行四边形,所以1=4又BD=FD,所以所以 BC=GC=CD因此,DCG为等腰三角形,且顶角DCG=45°,所以又所以 HDG=GHD,从而GH=GD,即GHD是等腰三角形练习十二(1) 如图2-38所示DEAC,BFAC,DE=BF,ADB=DBC求证:四边形ABCD是平行四边形2如图2-39所示在平行四边形ABCD中,ABE和BCF都是等边三角形求证:DEF是等边三角形3如图2-40所示ABCD中,AF平分BAD交BC于F,DEAF交CB于E求证:BE=CF4如图2-41所示矩形ABCD中,F在CB延长线上,AE=EF,CF=CA求证:BEDE5 如图2-42所示在正方形ABCD中,CE垂直于CAB的平分附录-初中几何公式、定理复习指导1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等 24 推论 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过

    注意事项

    本文(中考数学-高分攻略之几何部分.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开