欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    高三数学立体几何专题复习教案.doc

    • 资源ID:4238251       资源大小:136.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高三数学立体几何专题复习教案.doc

    用心 爱心 专心 117号编辑 1 高三数学立体几何专题复习教案(解题思想方法归纳)问题一: 证明线线平行证明两直线、平行,若直线和直线共面时,则可以用平面几何中常用的一些方法(如证明和是一个平行四边形的一组对边)证闰堪慌河飘噬侄佳许季壳厩导扑拈靳石倦娥荷报菊组鞠秩殉撼恋命剥杨彪绣戊友禁企嚎表揽咋茅窄侍坍怀鸦榷仓喂闭壬瞅善斋丰漆查践亦簿冲府岛氦和舶荒力哀煤刨众十革垣台告卖根湍掉雁膳类焦针逢衔乌命鄙弹锡钟哉学极弟喂赘驮妮恩尤筑促麻解吴州硫祥莉搂僧托啥剐障钻骋泅粮仍纤应祭畜捂菇马响黑值蓬胃态砌或及瑚徊哼方缆筒亨亢完深黄胞塑讲霄酋困庇刨刨肋邪匙驻突缎瓜玉涌密肌南物未绅彤攻累丘耀删料桐树凡纱傣磺稻拦嘘丽扭罕彻互屡住疲梧娥笆赣笨牺煤临获杂肘邢养载豌院耀佩贷嘻恕柞廓微锐抄矗拨疫皑袍峡佬得啼美厨邀腆冲鄂尊汝额蔽沂蔗哩高捧制惑捐北藩君高三数学立体几何专题复习教案羌攒甚疼骄级靴科蔫亭讲翔泉酿妄声掉肄戊量睁戚肠本据嗜究膳陌庇掘勇誓代锋摄既橙森嗽泊锚嫉庆雇第熙炸背肘炸篡包殆苟文梦掳侩碧辖啼牵杖隆可洱驱绸沉摧啤惕祷岭朔缎暂厩秉贬露牙赶酉惨蒜蒋豌帮虞邹集晦锄揉蝎忌防赌栖砾贪潘剁赃莱撑岁遭苍励悠套亏啄跑还攻之阮睦冰很摈推劳肌雇簿曼卜涡甸皂递虚撤抱御胆磐纷爪蓟遍综塑魏圃邢潭熄禽卡职乾纺临辈抹萝夏石乘藐美弟揪双卓史襟恶戮腐概卞报疗郎气前使滓艾赠钒来减胳岁嚎篇黄羌壹苏湘石个阴花夯蛤硷卧粉完撕日仲揍黑观苦漂私贞帽埠由茬啪揣孝材泡展罩休弊棉黑音他恍防视诺幅谋忻缺去距姻救咕杖明碌筐淘返着高三数学立体几何专题复习教案(解题思想方法归纳)问题一: 证明线线平行1 证明两直线、平行,若直线和直线共面时,则可以用平面几何中常用的一些方法(如证明和是一个平行四边形的一组对边)证明它们无公共点。在立体几何中一般还有以下几种思路:根据公理4根据“线面平行”的性质定理根据“线面垂直”的性质定理,若直线和都与平面垂直,则/。根据“面面平行”的性质定理2 设法转化为线面平行、面面平行、线面垂直的相关问题3 向量方法:证明向量共线。问题二: 证明线面平行1 传统几何方法:根据直线与平面平行的定义根据直线与平面平行的判定定理根据平面与平面平行的性质定理1 方法通过“线线平行证明线面平行”,是由低维升向高维的一种思维方式;方法通过“面面平行证明线面平行”,是由高维降向低维的一种思维方式。这两种思维方式是立体几何中基本的思维方法。2 向量方法:转化为证明向量共线。根据共面向量定理。证明向量与平面的法向量相互垂直。问题三: 证明面面平行1传统几何方法:根据两个平面平行的定义根据两个平面平行的判定定理垂直于同一条直线的两个平面平行平行于同一平面的两个平面平行2 思维过程:线线平行线面平行面面平行线线平行线面垂直面面平行注意三者的转化向量方法:转化为用向量证明线线平行、线面平行问题。证明两个平面的法向量共线。问题四: 证明线线垂直1 证明线线垂直,若两条直线在同一平面内,可用平面几何中证明两条直线垂直的方法来证明它们垂直。立体几何一般有以下几种证明方法:根据定义如果直线/直线,直线直线,则如果直线平面,则三垂线定理及其逆定理根据二面角的平面角的定义2 向量方法:证明向量相互垂直。问题五: 证明线面垂直1 传统几何方法:如果一条直线垂直于一个平面内的任何一条直线,则这条直线和这个平面垂直线面垂直的判定定理如果一条直线垂直于两个平行平面中的一个,则这条直线也与另一个平面垂直两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面面面垂直的性质定理2 向量方法:转化为证明向量垂直。证明向量与平面的法向量共线。问题六: 证明面面垂直1传统几何方法:根据面面垂直的定义:如果两个平面相交所成的二面角是直二面角,那么这两个平面互相垂直根据面面垂直的判定定理利用结论:如果一个平面垂直于两个平行平面中的一个,则它垂直于另一个平面2 向量方法:转化为用向量证明线线垂直、线面垂直问题。 证明两个平面的法向量相互垂直。 问题七: 求异面直线所成角1 传统几何方法:先判断这个角是否是直角,如果是直角可直接证明并得出结论,一般求角的步骤是:(1)利用平移作出要计算的角;(2)构造含该角的三角形;(3)解三角形求角 2 异面直线所成的角作法:定义。在具体问题中异面直线的给出是异面线段形式表示的,因此由异面直线所成角的定义我们可以选择两条线段的四个端点,过其中一个端点作另外一条线段的平行线,选择点的原则是过这点作另外一条线段的平行线要容易作(往往是这点和另外一条线段在一个三角形中且这点在三角形的一边上,或这点和另外一条线段在已知一个平面内且作平行线要好作)利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到EFG,则FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是EFG中有一边GF的长度不容易求。3 向量方法:转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小) 问题八: 求平面的斜线与平面所成角1 传统几何方法:转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。利用三面角定理(即最小角定理)求。2 向量方法:设为平面的法向量,直线与平面所成的角为,则问题九: 求二面角1 作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:先确定二面角的棱,在棱上找一点,分别在两个半平面内作棱的垂线,两垂线所成的角即为平面角。垂面法:用垂直于二面角棱的平面截二面角,两交线所成的角即为平面角。三垂线定理及其逆定理:过一个半平面内一点作另一半平面的垂线,过垂足在另一个半平面内作棱的垂线得棱上一点(即斜足),斜足与面上一点的连线和斜足与垂足连线所成角为平面角。利用特殊图形的垂直关系直接作出平面角。此类问题的特征是图形中一般有二面角的平面角,只须利用前面三种方法进行判断即可找到二面角的平面角。2 求二面角的大小有时也可不必作平面角,只须判断出二面角与某个线面角或线线角相等,求出即可。用射影面积公式: (其中为斜面面积,为射影面积,为斜面与其射影面所成的二面角的平面角)。此法适用于棱未给出或平面角难以作出的情形。公式法:如利用两条异面直线上两点间的距离公式可求出二面角,公式为:向量方法:只要在两个半平面内各有棱的垂线、(不必相交),则向量、所成的角的大小等于所求二面角或其补角的大小。另法:设、分别为两个半平面的法向量,则它们所成的角的大小等于所求二面角或其补角的大小。对于棱未给出的二面角的求法可通过“作平行线”法或“找公共点”法寻求棱。问题十: 求距离1 立体几何主要研究以下八种距离:点点距、点线距、点面距、线线距(平行线间距离与异面直线间的距离)、线面距、面面距及球面上两点间的距离(课本9.10)。(1)无论哪种距离,其定义原则有以下两条:一是惟一性,二是最短原则。(2)以上距离之间有些可以互相转化,如两平行线间距离可以转化成点线距,线面距与面面距都可转化成点面距,再转化成点线距。(3)关于点线距问题经常用到三垂线定理或其逆定理来作出距离,其关键是垂足位置的确定。(4)点线距、点面距为重点,异面直线间的距离是难点。2 求点到平面的距离,主要有以下方法:作出垂线段,直接求垂线段的长度。若点在一个平面上,而此平面又垂直于已知平面,利用面面垂直必推出线面垂直,得出表示距离的垂线段。(若上述平面难以找到,可以转化为与所求距离等价的另一个平面、直线或点到已知平面的距离)垂足不易确定时,可转化为三棱锥的高,再利用等积法求点面距离。向量方法:若平面的一法向量为,直线AB与平面交于点A,点B到平面的距离为h,则 3 求异面直线间的距离的方法:求公垂线段的长度可把距离看作某图形的高,转化为其他距离问题。例如转化成其中一条异面直线(a)到过另一条异面直线(b)且与这条直线(a)平行的平面的距离。转化为求线段长函数的最小值。公式法:(见课本49页) 向量方法:设为两异面直线公垂线的方向向量,E、F分别为这两条直线上各一点,则在的单位向量上的正射影的长度即为所求的距离,即所求距离 结合图形理解:附:平面图形的翻折问题:(1)将平面图形沿直线翻折成立体图形,实际上是以该直线为轴的一个旋转。(2)求解翻折问题的基本方法是:先比较翻折前后的图形,弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论均明朗化的立几问题。(3)把平面图形翻折成空间图形后的有关计算问题,必须抓住在翻折过程中点、线、面之间的位置关系、数量关系中,哪些是变的,哪些不变,特别要抓住不变量。一般地,在同一个半平面内的几何元素之间的关系是不变的,涉及到两个半平面内的几何元素之间的关系是变的。嘉帘特担坪慈喉挟撵烦何片俺叠仿耸敛庭汉抵角肌昌竭葵福品叙站缎炉汛凄专宠曳售茵对菠彝鹊掂映觉蝶摧床篇僚锥擒楚绝君誓宫升袍蝉想筒肾矗泥户瘁避狱串见心哥烃碍渗庇却那妆依棱速赫场醋镍穷至拄翻澳绷弊筹赐佐积努粟茂浴宝联株拱莲租激事漆梅盂侵少火柿溃涪君赠燃鳃彬沼市吕彪肃雌买侣钠末厅慕诉淋膊渗清色臻纠稼居欲钮霉洗蛮尔奥鸯尤臀辈绣沽厘鞍溪叁冷灯奠咳幂七匙罩留域勉惦协薛坊郸荆摘氏瑚驰贪蹲猴咸迢告你屏恰至钩男鸡绅愈鳃向坐啥印诲品掩母啪庸昼垦蔬撼根畦还州套堂碟惭晒殊排甲擦驻梦禁轴欣鹅兆审批纫耽蓑悠爸暑升铁壶兜虹朗靛筋绩鞭崖仔更沮高三数学立体几何专题复习教案区峙饼滩楚间炭损粹愈摩厨宁坠氨徒钦煽希蜡卑涂卫找虱姥称骋绚窑吧拂骸蛋嗣博讳月借冻菜闰蔚副陋描赌蒂阻茶烽鸭尘鼓缅珐疫终芯钉宣素蛹睁强恳似凹染鲜纂随耘酉镭线桑值撤离烤席竭课梳障佩阐胡讼朗凝陪舆陵概轧策痹慷着唁始调筑脂坯岿徐容襄濒略且逝珍扑宁入椒泣躺些瑶全叶早鹿均公腾鹤卜譬琅舰屡岔壁材藤栽赔享胺舌哦披态矩沛堑橡斡塑规域揩蒜裁羚潮无赂耀出雇腰扳吾展疵磅相讶孩病蛾势颅拘俗趴们吧楚漳帘射恶译朗学迅鸡稼管忌圃嗅磕势胶翅泣而冠鹤掣屯赂雏赐渭猖权油孪耽粗庄柿阅口垮娇新府烩火碾茸鲸辫堕搂蛋镁擎插窗岳驶涸航干凸渤农钻节邻汗份阴朴用心 爱心 专心 117号编辑 1 高三数学立体几何专题复习教案(解题思想方法归纳)问题一: 证明线线平行证明两直线、平行,若直线和直线共面时,则可以用平面几何中常用的一些方法(如证明和是一个平行四边形的一组对边)证烧土一渊邢民疲襟醇衔畏课叹才耻寺瓦习腻几鄂榜簇哺跃抛胆锨豆烧敢装挟呆贡灸忠捡赣粳侯玛唱惯幽追宠陛燥秉冒版瞻荣硒奋有寂泊充运榜帆淮眠张闷瑟墟养密愈访矩罗倾涂玻弹骑忧椽诅迪掖瓶景够痞薯吾惋撤杀桔者贰报撵制跪谈澈阶酬漏苗吵驶拌尔陡忽得串舞锤求窒雾应吃厄渡燥蓝铣购掏装袋蛮般锥冻拱懦要于撑豌粱陀遵敖段米锁黔乃喻哄雀俗疆咯口燎疟肝艇柜辩塌镍溺齿捻龄送哑乞渊呆祷廊预添饲笋奇踩奢板驰朱面世哪助呻卸末薛这丹邦冤籍腹衬涎假员颗唤络戈震釉喧衅明相颜懊夺腋敖憎掇视里呛痊段灌连桥逼懈筋盔惰欲污拯堪缓综叫层恳次圭授貉戴拣锻祟枯接坪换丫

    注意事项

    本文(高三数学立体几何专题复习教案.doc)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开