椭圆 双曲线抛物线必背的经典结论.doc
新梦想教育辅导讲义学员编号(卡号): 年 级: 第 课时学员姓名: 辅导科目: 教师: 课 题授课时间: 月 日 备课时间: 月 日教学目标重点、难点考点及考试要求教学内容椭圆 双曲线抛物线必背的经典结论椭 圆1. 点P处的切线PT平分PF1F2在点P处的外角.2. PT平分PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相离.4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.5. 若在椭圆上,则过的椭圆的切线方程是.6. 若在椭圆外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.7. 椭圆 (ab0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为.8. 椭圆(ab0)的焦半径公式:,( , ).9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MFNF.10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MFNF.11. AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,即。12. 若在椭圆内,则被Po所平分的中点弦的方程是.13. 若在椭圆内,则过Po的弦中点的轨迹方程是.双曲线1. 点P处的切线PT平分PF1F2在点P处的内角.2. PT平分PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相交.4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)5. 若在双曲线(a0,b0)上,则过的双曲线的切线方程是.6. 若在双曲线(a0,b0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.7. 双曲线(a0,bo)的左右焦点分别为F1,F 2,点P为双曲线上任意一点,则双曲线的焦点角形的面积为.8. 双曲线(a0,bo)的焦半径公式:( , 当在右支上时,,.当在左支上时,,9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MFNF.10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MFNF.11. AB是双曲线(a0,b0)的不平行于对称轴的弦,M为AB的中点,则,即。12. 若在双曲线(a0,b0)内,则被Po所平分的中点弦的方程是.13. 若在双曲线(a0,b0)内,则过Po的弦中点的轨迹方程是.椭圆与双曲线的对偶性质-(会推导的经典结论)椭 圆1. 椭圆(abo)的两个顶点为,,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是.2. 过椭圆 (a0, b0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且(常数).3. 若P为椭圆(ab0)上异于长轴端点的任一点,F1, F 2是焦点, , ,则.4. 设椭圆(ab0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在PF1F2中,记, ,,则有.5. 若椭圆(ab0)的左、右焦点分别为F1、F2,左准线为L,则当0e时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.6. P为椭圆(ab0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则,当且仅当三点共线时,等号成立.7. 椭圆与直线有公共点的充要条件是.8. 已知椭圆(ab0),O为坐标原点,P、Q为椭圆上两动点,且.(1);(2)|OP|2+|OQ|2的最大值为;(3)的最小值是.9. 过椭圆(ab0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则.10. 已知椭圆( ab0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点, 则.11. 设P点是椭圆( ab0)上异于长轴端点的任一点,F1、F2为其焦点记,则(1).(2) .12. 设A、B是椭圆( ab0)的长轴两端点,P是椭圆上的一点,, ,,c、e分别是椭圆的半焦距离心率,则有(1).(2) .(3) .13. 已知椭圆( ab0)的右准线与x轴相交于点,过椭圆右焦点的直线与椭圆相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.椭圆与双曲线的对偶性质-(会推导的经典结论)双曲线1. 双曲线(a0,b0)的两个顶点为,,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是.2. 过双曲线(a0,bo)上任一点任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且(常数).3. 若P为双曲线(a0,b0)右(或左)支上除顶点外的任一点,F1, F 2是焦点, , ,则(或).4. 设双曲线(a0,b0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在PF1F2中,记, ,,则有.5. 若双曲线(a0,b0)的左、右焦点分别为F1、F2,左准线为L,则当1e时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.6. P为双曲线(a0,b0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则,当且仅当三点共线且和在y轴同侧时,等号成立.7. 双曲线(a0,b0)与直线有公共点的充要条件是.8. 已知双曲线(ba 0),O为坐标原点,P、Q为双曲线上两动点,且.(1);(2)|OP|2+|OQ|2的最小值为;(3)的最小值是.9. 过双曲线(a0,b0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则.10. 已知双曲线(a0,b0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点, 则或.11. 设P点是双曲线(a0,b0)上异于实轴端点的任一点,F1、F2为其焦点记,则(1).(2) .12. 设A、B是双曲线(a0,b0)的长轴两端点,P是双曲线上的一点,, ,,c、e分别是双曲线的半焦距离心率,则有(1).(2) .(3) .13. 已知双曲线(a0,b0)的右准线与x轴相交于点,过双曲线右焦点的直线与双曲线相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.抛物线结论一:若AB是抛物线的焦点弦(过焦点的弦),且,则:,。结论二:(1)若AB是抛物线的焦点弦,且直线AB的倾斜角为,则(0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。结论四:若抛物线方程为,过(,0)的直线与之交于A、B两点,则OAOB。反之也成立。结论五:对于抛物线,其参数方程为设抛物线上动点坐标为,为抛物线的顶点,显然,即的几何意义为过抛物线顶点的动弦的斜率基础回顾1. 以AB为直径的圆与准线相切;2. ;3. ;4. ;5. ;6. ;7. ;8. A、O、三点共线;9. B、O、三点共线;10. ;11. (定值);12. ;13. 垂直平分;14. 垂直平分;15. ;16. ;17. ;18. ;19. ;20. ;21. .22. 切线方程 性质深究一)焦点弦与切线1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处?结论1:交点在准线上先猜后证:当弦轴时,则点P的坐标为在准线上结论2 切线交点与弦中点连线平行于对称轴结论3 弦AB不过焦点即切线交点P不在准线上时,切线交点与弦中点的连线也平行于对称轴2、上述命题的逆命题是否成立?结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点先猜后证:过准线与x轴的交点作抛物线的切线,则过两切点AB的弦必过焦点结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径3、AB是抛物线(p0)焦点弦,Q是AB的中点,l是抛物线的准线,过A,B的切线相交于P,PQ与抛物线交于点M则有结论6PAPB结论7PFAB结论8 M平分PQ结论9 PA平分A1AB,PB平分B1BA结论10结论11二)非焦点弦与切线思考:当弦AB不过焦点,切线交于P点时,也有与上述结论类似结果:结论12 ,结论13 PA平分A1AB,同理PB平分B1BA结论14 结论15 点M平分PQ结论16 学生对于本次课的评价: 特别满意 满意 一般 差 学生签字: 教师评定:1、 学生上次作业评价: 好 较好 一般 差2、 学生本次上课情况评价: 好 较好 一般 差 教师签字: 教学主管意见: 家长签字: _新梦想教务处