导数的应用常用方法(导数好题解析版).doc
导数题型总结(解析版)体型一:关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-(已知谁的范围就把谁作为主元);例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数 得 (1) 在区间上为“凸函数”,则 在区间0,3上恒成立 解法一:从二次函数的区间最值入手:等价于 解法二:分离变量法: 当时, 恒成立, 当时, 恒成立等价于的最大值()恒成立,而()是增函数,则(2)当时在区间上都为“凸函数” 则等价于当时 恒成立 变更主元法 再等价于在恒成立(视为关于m的一次函数最值问题)-22 例2:设函数 ()求函数f(x)的单调区间和极值; ()若对任意的不等式恒成立,求a的取值范围. (二次函数区间最值的例子)解:() 3aaa3a令得的单调递增区间为(a,3a)令得的单调递减区间为(,a)和(3a,+)当x=a时,极小值= 当x=3a时,极大值=b. ()由|a,得:对任意的恒成立则等价于这个二次函数 的对称轴 (放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。上是增函数. (9分)于是,对任意,不等式恒成立,等价于 又点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:恒成立恒成立;从而转化为第一、二种题型例3;已知函数图象上一点处的切线斜率为,()求的值;()当时,求的值域;()当时,不等式恒成立,求实数t的取值范围。解:(), 解得 ()由()知,在上单调递增,在上单调递减,在上单调递减又 的值域是()令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值二、参数问题题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立, 回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集; 做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数()如果函数是偶函数,求的极大值和极小值;()如果函数是上的单调函数,求的取值范围解:. () 是偶函数, . 此时, 令,解得:. 列表如下:(,2)2(2,2)2(2,+)+00+递增极大值递减极小值递增 可知:的极大值为, 的极小值为. ()函数是上的单调函数,在给定区间R上恒成立判别式法则 解得:. 综上,的取值范围是. 例5、已知函数 (I)求的单调区间; (II)若在0,1上单调递增,求a的取值范围。子集思想(I) 1、 当且仅当时取“=”号,单调递增。 2、 a-1-1单调增区间: 单调增区间:(II)当 则是上述增区间的子集:1、时,单调递增 符合题意2、, 综上,a的取值范围是0,1。 三、题型二:根的个数问题题1函数f(x)与g(x)(或与x轴)的交点=即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6、已知函数,且在区间上为增函数(1) 求实数的取值范围;(2) 若函数与的图象有三个不同的交点,求实数的取值范围解:(1)由题意 在区间上为增函数,在区间上恒成立(分离变量法)即恒成立,又,故的取值范围为 (2)设,令得或由(1)知,当时,在R上递增,显然不合题意当时,随的变化情况如下表:极大值极小值由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即 ,解得综上,所求的取值范围为根的个数知道,部分根可求或已知。例7、已知函数(1)若是的极值点且的图像过原点,求的极值;(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。解:(1)的图像过原点,则 ,又是的极值点,则-1 (2)设函数的图像与函数的图像恒存在含的三个不同交点,等价于有含的三个根,即:整理得:即:恒有含的三个不等实根(计算难点来了:)有含的根,则必可分解为,故用添项配凑法因式分解, 十字相乘法分解:恒有含的三个不等实根等价于有两个不等于-1的不等实根。题2:切线的条数问题=以切点为未知数的方程的根的个数例7、已知函数在点处取得极小值4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围(1)由题意得:在上;在上;在上因此在处取得极小值,由联立得:, (2)设切点Q,过令,求得:,方程有三个根。需:故:;因此所求实数的范围为:题3:已知在给定区间上的极值点个数则有导函数=0的根的个数解法:根分布或判别式法例8、解:函数的定义域为()当m4时,f (x) x3x210x,x27x10,令 , 解得或.令 , 解得可知函数f(x)的单调递增区间为和(5,),单调递减区间为()x2(m3)xm6, 1要使函数yf (x)在(1,)有两个极值点,x2(m3)xm6=0的根在(1,)根分布问题:则, 解得m3例9、已知函数,(1)求的单调区间;(2)令x4f(x)(xR)有且仅有3个极值点,求a的取值范围解:(1) 当时,令解得,令解得,所以的递增区间为,递减区间为.当时,同理可得的递增区间为,递减区间为.(2)有且仅有3个极值点=0有3个根,则或,方程有两个非零实根,所以或而当或时可证函数有且仅有3个极值点其它例题:1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是11.()求函数的解析式;()若时,恒成立,求实数的取值范围.解:() 令=0,得 因为,所以可得下表:0+0-极大 因此必为最大值,因此, , 即, (),等价于, 令,则问题就是在上恒成立时,求实数的取值范围,为此只需,即, 解得,所以所求实数的取值范围是0,1.2、(根分布与线性规划例子)(1)已知函数() 若函数在时有极值且在函数图象上的点处的切线与直线平行, 求的解析式;() 当在取得极大值且在取得极小值时, 设点所在平面区域为S, 经过原点的直线L将S分为面积比为1:3的两部分, 求直线L的方程.解: (). 由, 函数在时有极值 , 又 在处的切线与直线平行, 故 . 7分 () 解法一: 由 及在取得极大值且在取得极小值, 即 令, 则 故点所在平面区域S为如图ABC, 易得, , , , , 同时DE为ABC的中位线, 所求一条直线L的方程为: 另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分, 设直线L方程为,它与AC,BC分别交于F、G, 则 , 由 得点F的横坐标为: 由 得点G的横坐标为: 即 解得: 或 (舍去) 故这时直线方程为: 综上,所求直线方程为: 或 .12分() 解法二: 由 及在取得极大值且在取得极小值, 即 令, 则 故点所在平面区域S为如图ABC, 易得, , , , , 同时DE为ABC的中位线, 所求一条直线L的方程为: 另一种情况由于直线BO方程为: , 设直线BO与AC交于H , 由 得直线L与AC交点为: , , 所求直线方程为: 或 3、(根的个数问题)已知函数的图象如图所示。()求的值;()若函数的图象在点处的切线方程为,求函数f ( x )的解析式;()若方程有三个不同的根,求实数a的取值范围。解:由题知:()由图可知函数f ( x )的图像过点( 0 , 3 ),且= 0得 ()依题意= 3 且f ( 2 ) = 5解得a = 1 , b = 6 所以f ( x ) = x3 6x2 + 9x + 3()依题意f ( x ) = ax3 + bx2 ( 3a + 2b )x + 3 ( a0 )= 3ax2 + 2bx 3a 2b 由= 0b = 9a 若方程f ( x ) = 8a有三个不同的根,当且仅当 满足f ( 5 )8af ( 1 ) 由 得 25a + 38a7a + 3a3 所以 当a3时,方程f ( x ) = 8a有三个不同的根。 12分4、(根的个数问题)已知函数 (1)若函数在处取得极值,且,求的值及的单调区间; (2)若,讨论曲线与的交点个数 解:(1)2分令得令得的单调递增区间为,单调递减区间为5分(2)由题得即令6分令得或7分当即时此时,有一个交点;9分当即时, ,当即时,有一个交点;当即时,有两个交点; 当时,有一个交点13分综上可知,当或时,有一个交点; 当时,有两个交点14分5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数() 若函数在处有极值,求的解析式;() 若函数在区间上为增函数,且在区间上都成立,求实数的取值范围