高考数学分类汇编之概率统计与排列组合二项式定理(六).doc
-
资源ID:4230065
资源大小:231.50KB
全文页数:7页
- 资源格式: DOC
下载积分:8金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高考数学分类汇编之概率统计与排列组合二项式定理(六).doc
2011年高考分类汇编之概率统计与排列组合二项式定理(六)山东理 7. 某产品的广告费用x与销售额y的统计数据如下表广告费用(万元)4235销售额(万元)49263954 根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为(A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元【答案】B【解析】由表可计算,因为点在回归直线上,且为9.4,所以, 解得,故回归方程为, 令x=6得65.5,选B.14. 若展开式的常数项为60,则常数的值为 .【答案】4【解析】因为,所以r=2, 常数项为60,解得.18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。()求红队至少两名队员获胜的概率;()用表示红队队员获胜的总盘数,求的分布列和数学期望.【解析】()红队至少两名队员获胜的概率为=0.55.()取的可能结果为0,1,2,3,则=0.1;+=0.35;=0.4;=0.15.所以的分布列为0123P0.10.350.40.15数学期望=0×0.1+1×0.35+2×0.4+3×0. 15=1.6. 山东文 8某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程中的为94,据此模型预报广告费用为6万元时销售额为 A636万元 B655万元 C677万元 D720万元B(13)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 . 16(18)(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.()若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;()若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.18解:(I)甲校两男教师分别用A、B表示,女教师用C表示;乙校男教师用D表示,两女教师分别用E、F表示从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D)(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种。从中选出两名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F)共4种,选出的两名教师性别相同的概率为 (II)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,从中选出两名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F)共6种,选出的两名教师来自同一学校的概率为 陕西理 4(R)展开式中的常数项是 ( )(A) (B) (C)15 (D)20【分析】根据二项展开式的通项公式写出通项,再进行整理化简,由的指数为0,确定常数项是第几项,最后计算出常数项.【解】选C ,令,则,所以,故选C9设,是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归方程(如图),以下结论中正确的是 ( )(A)和的相关系数为直线的斜率(B)和的相关系数在0到1之间(C)当为偶数时,分布在两侧的样本点的个数一定相同(D)直线过点【分析】根据最小二乘法的有关概念:样本点的中心,相关系数线,性回归方程的意义等进行判断【解】选D选项具体分析结论A相关系数用来衡量两个变量之间的相关程度,直线的斜率表示直线的倾斜程度;它们的计算公式也不相同不正确B相关系数的值有正有负,还可以是0;当相关系数在0到1之间时,两个变量为正相关,在到0之间时,两个变量负相关不正确C两侧的样本点的个数分布与的奇偶性无关,也不一定是平均分布不正确D回归直线一定过样本点中心;由回归直线方程的计算公式可知直线必过点正确 10甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ( )(A) (B) (C) (D)【分析】本题抓住主要条件,去掉次要条件(例如参观时间)可以简化解题思路,然后把问题简化为两人所选的游览景点路线的排列问题【解】选D 甲乙两人各自独立任选4个景点的情形共有(种);最后一小时他们同在一个景点的情形有(种),所以20(本小题满分13分)如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:时间(分钟)10202030304040505060的频率的频率0现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 .【分析】(1)会用频率估计概率,然后把问题转化为互斥事件的概率;(2)首先确定X的取值,然后确定有关概率,注意运用对立事件、相互独立事件的概率公式进行计算,列出分布列后即可计算数学期望【解】(1)表示事件“甲选择路径时,40分钟内赶到火车站”, 表示事件“甲选择路径时,50分钟内赶到火车站”,用频率估计相应的概率,则有:,;,甲应选择路径;,;,乙应选择路径(2)用A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知,又事件A,B相互独立,的取值是0,1,2,X的分布列为012P0.040.420.54 陕西文 9设··· ,是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )(A) 直线过点 (B)和的相关系数为直线的斜率(C)和的相关系数在0到1之间(D)当为偶数时,分布在两侧的样本点的个数一定相同【分析】根据最小二乘法的有关概念:样本点的中心,相关系数线,性回归方程的意义等进行判断【解】选A选项具体分析结论A回归直线一定过样本点中心;由回归直线方程的计算公式可知直线必过点正确B相关系数用来衡量两个变量之间的相关程度,直线的斜率表示直线的倾斜程度;它们的计算公式也不相同不正确C相关系数的值有正有负,还可以是0;当相关系数在0到1之间时,两个变量为正相关,在到0之间时,两个变量负相关不正确D两侧的样本点的个数分布与的奇偶性无关,也不一定是平均分布不正确20.(本小题满分13分)如图,A地到火车站共有两条路径和,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10202030304040505060选择的人数612181212选择的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2 )分别求通过路径和所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径【分析】(1)读懂数表,确定不能赶到火车站的人数所在的区间,用相应的频率作为所求概率的估计值;(2)根据频率的计算公式计算;(3)计算选择不同的路径,在允许的时间内赶往火车站的概率,通过比较概率的大小确定选择的最佳路径【解】(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人,用频率估计相应的概率为0.44.(2 )选择的有60人,选择的有40人,故由调查结果得频率为:所用时间(分钟)10202030304040505060选择的人数0.10.20.30.20.2选择的人数00.10.40.40.1(3)用,分别表示甲选择和时,在40分钟内赶到火车站;用,分别表示乙选择和时,在50分钟内赶到火车站由(2)知P(A1) =0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5, P(A1) P(A2),甲应选择路径;P(B1) =0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)P(B1), 乙应选择路径L2.