2001天津高考文科数学概率试题部分.doc
(2010). 有编号为,的10个零件,测量其直径(单位:cm),得到下面数据:其中直径在区间1.48,1.52内的零件为一等品。()从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;()从一等品零件中,随机抽取2个. ()用零件的编号列出所有可能的抽取结果; ()求这2个零件直径相等的概率。(2009). 为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂()求从A,B,C区中分别抽取的工厂个数;()若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。(2008). 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为()求乙投球的命中率;()求甲投球2次,至少命中1次的概率;()若甲、乙两人各投球2次,求两人共命中2次的概率(2007). 已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球现从甲、乙两个盒内各任取2个球()求取出的4个球均为红球的概率;()求取出的4个球中恰有1个红球的概率;(2006). 甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是乙机床产品的正品率是(I)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答);(II)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答(2004). 从4名男生和2名女生中任选3人参加演讲比赛(1)求所选3人都是男生的概率;(2)求所选3人中恰有1名女生的概率;(3)求所选3人中至少有1名女生的概率(2003). 在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. ()求恰有一件不合格的概率; ()求至少有两件不合格的概率. (精确到0.001)(2002) (2001). N1N2如图,用A、B、C三类不同的无件连接成两个系统N1、N2当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90分别求系统N1、N2正常工作的概率P1、P2 A B C B C A