欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    人教版高中数学教案《幂函数》.doc

    • 资源ID:4222457       资源大小:187KB        全文页数:7页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版高中数学教案《幂函数》.doc

    幂函数教学目标1知识目标(1)了解幂函数的概念; (2)会画简单幂函数的图象,并能根据图象得出这些函数的性质;(3)了解幂函数图象的变化情况和性质。 2能力目标(1)培养学生观察分析归纳能力;(2)培养学生概括抽象和识图能力;(3)培养学生数形结合的意识和思想。3 情感目标     培养学生合作、交流、探究的意识品质,激发学生的学习兴趣和学习欲望。教学重点  从五个具体的幂函数中认识幂函数的概念和性质教学难点  幂函数的图象和性质的总结教学用具  多媒体平台,几何画板课件教学过程【导入新课】 回答下列问题1如果张红买了每千克1元的蔬菜w千克,那么她需要付的钱数p(元)和购买的蔬菜的量w(千克)之间有何关系?2如果正方形的边长a,那么其面积S如何表示?3如果正方体的边长为a,那么它的体积V如何表示?4如果正方形的面积为S,则它的边长a如何表示?5某人在t秒内骑车行进了1千米,那么他骑车的平均速度v为多少?答:【推进新课】提出问题 问1:上述问题中的五个函数关系式从结构上看有什么共同的特点?是否为指数函数?提示:用x表示自变量,用y表示函数值,上述函数式变成:以下五个函数 它们都是形如的函数。从而给出幂函数的定义: 一般地,函数叫做幂函数(power function),其中x是自变量,是常数。练习:判别下列函数中哪些是幂函数y=y=2x2y=xy=x2+x y=-x3 解: y=的底数是,因此不是幂函数;的变量的系数是2,因此不是幂函数; y=x的底数是变量,指数是常数,因此是幂函数;y=x2+x变量是和的形式,因此不是幂函数;y=-x3的变量的系数为-1,因此不是幂函数;的底数是变量,指数是常数,因此是幂函数。 思考:(1)幂函数与指数函数有什么联系和区别?(2) 幂函数具有哪些性质?研究函数应该从哪些方面考虑?前面指数函数、对数函数研究了哪些内容?是如何研究的?(根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数的图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等,研究幂函数也如此)(3) 幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?.例1写出下列函数的定义域,并指出奇偶性:y=xy=y=xy=x探究:(1)怎样便于看出幂函数的定义域?(分数指数应化成根式,负指数写成正数指数再写出定义域。 )(2)观察幂函数的定义域对其奇偶性有什么影响?只要幂函数的定义域是关于原点对称的(或者说定义域中有负数),则其一定具有奇偶性。【动手实践】画出 五个函数的图象,完成下列表格 定义域     值域  待添加的隐藏文字内容3   奇偶性     单调性     共同点     图象分布学生利用描点法在同一坐标系中画出五个函数图象,然后教师利用几何画板将五个函数的图象用追踪点的方法展示。完成表格: 定义域R R R   值域R  R   奇偶性奇 偶奇 非奇非偶 奇 单调性在第象限单调递增 在第象限单调递增  在第象限单调递增  在第象限单调递增   在第象限单调递增减共同点(1,1) (1,1)(1,1) (1,1) (1,1) 图象分布第、象限第、象限第、象限第象限第、象限设问:(1)上述函数有哪些共同特点? 当指数为正数时,如(1)图象都过点(0,0)和(1,1);(2)在0,)上是增函数。当指数为负数时,如(1)图象过点(1,1);(2)在(0,)上是减函数。(2)通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断?答:第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,也可能没有图象,这时可以通过幂函数的定义域和奇偶性来判断。【类比联想、拓展探究】我们研究的几个常见的幂函数的性质,是否也适合其他的幂函数,一般的幂函数怎样去研究它的性质呢?让同学们讨论、猜想一般的幂函数的图象和性质老师用几何画板画出函数在第一象限内的图象,改变的值,让学生观察、分析所得的函数图象,在动态的变化过程中,让学生了解幂函数的本质和共性。从而给出幂函数的性质:(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1)(2)当>0时,图象过(0,0),(1,1),并且在0,+)上是增函数;特别地,当1时,的图象都在的下方,形状向下凸,越大,下凸的程度越大;当01时的图象都在的上方,形状向上凸,越小,上凸的程度越大;(3)<0时,幂函数的图象在区间(0,+)是减函数,与坐标轴无交点;(4)其他象限内的图象可以通过函数的定义域和奇偶性得出。例2:比较下列各组中两个值的大小,并说明理由:0.75,0.76;(-0.95),(-0.96);0.31,0.31变式练习:比较0.20.3,0.30.3,0.30.2.的大小。反思:如何比较幂值的大小?小结:指数相同的幂的大小比较可以利用幂函数的单调性;底数相同的幂的大小比较可以利用指数函数的单调性。例3:证明幂函数在0,+)上是增函数。分析:证函数单调性的一般方法?从而引导学生利用定义证明。【课时小结】今天的学习内容和方法有哪些?你有哪些收获和经验? 引导学生一起总结幂函数的概念、性质及应用。让学生体会到:认识幂函数的性质,必须从它的图象着手,重点抓住幂函数在第一象限内的图象特征,然后根据奇偶性作出其它象限内的图象,因而对函数的定义域和奇偶性的分析很重要。作业:课本

    注意事项

    本文(人教版高中数学教案《幂函数》.doc)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开