欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    人教版高中数学必修4第三章《三角恒等变换》教材分析与教学建议.doc

    • 资源ID:4222399       资源大小:44.50KB        全文页数:3页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版高中数学必修4第三章《三角恒等变换》教材分析与教学建议.doc

    人教版高中数学必修4第三章三角恒等变换教材分析与教学建议本章学习的主要内容是两角和与差的正弦、余弦和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上. 通过本章的学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.一、课程标准内容1经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用.2能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.3能运用上述公式进行简单的恒等变换(包括尝试导出).二、知识框图三、教学要求3.1 两角和与差的正弦、余弦和正切公式基本要求了解学习两角和与差三角函数公式的必要性.理解用三角函数线、向量推导两角差的余弦公式的思路.能利用两角差的余弦公式推出两角和与倍角的其它三角函数公式.能利用这些公式进行和、差、倍角的求值和简单的化简.发展要求理解在两角差的余弦公式的推导过程中所体现的向量方法.理解和、差、倍角的相对性,能对角进行合理正确的拆分.能对公式进行简单的逆用.说明控制好拆分角度的难度.题型的变化不宜过多.3.2 简单的三角恒等变换基本要求能利用和、差、倍角的公式进行基本的变形,并证明三角恒等式.能利用三角恒等变换研究三角函数的性质.能把一些实际问题化为三角问题,通过三角变换解决.发展要求了解和、差、倍角公式的特点,并进行变形应用.理解三角变换的基本特点和基本功能.了解三角变换中蕴藏的数学思想和方法.说明积化和差、和差化积、半角公式只作为练习,不要求记忆.四、教学建议1课时分配3.1.1两角差的余弦公约1课时3.1.2两角和与差的正弦、余弦和正切公式约1课时3.1.3二倍角的正弦、余弦和正切公式约1课时小结复习约1课时3.2简单的三角恒等变换约3课时小结复习约1课时2重点难点3.1节重点是通过探索和讨论交流,导出两角和与差的三角函数的十一个公式,并了解它们的内在联系.难点是两角差的余弦公式的探索和证明.3.2节重点是掌握三角变换的内容、思路和方法,体会三角变换的特点.难点是公式的灵活应用.3分析说明 本章内容的重点之一是两角差的余弦公式的推导及在推导过程中体现的思想方法,同时它也是难点.为了突出重点、突破难点,教学中可以设计一定的教学情景,引导学生从数形结合的角度出发,利用单位圆中的三角函数线、三角形中的边角关系等建立包含,的正弦、余弦值的等量关系.前一章中已经明确指出,向量的数量积是解决距离与夹角问题的工具,在两角差的余弦公式的推导中能够体现它的作用.由于学生刚接触向量,他们还不太习惯用向量工具解决问题,因此这里需要教师作引导.教学时应当注意下面四个要点:在需要学生联系已学过的其它知识时,有意识的引导学生联想向量知识;充分利用单位圆,分析其中有关几何元素(角的终边及其夹角)的关系,为向量方法的运用做好准备;探索过程的安排,应当先把握整体,然后逐步追求细节,在补充完善细节的过程中,需要运用分类讨论思想,突破两角差的余弦公式的推导这一难点后,其他所有公式都可以通过学生自己的独立探索而得出.本章不仅关注使学生得到差(和)角公式,而且还特别关注公式推导过程中体现的数学思想方法.在两角差的余弦公式的推导中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦和正切公式的过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、特殊化、化归等思想方法.特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导.教材还对三角变换中的数学思想方法作了明确的总结.例如,在旁白中有“倍是描述两个数量之间关系的,是的二倍 是 的二倍,这里蕴含着换元的思想”“这两个式子的左右两边在结构上有什么不同”等,这些都可以成为我们加强对思想方法渗透的一个重要的内容,也是我们开展研究性学习的好素材.本章强调了用向量方法推导差角的余弦公式,并用三角函数之间的关系推导和(差)角公式、二倍角公式.要把重点放在培养学生的推理能力和运算能力上,降低变换的技巧性要求.教学时应当把握好这种“度”,遵循“标准”所规定的内容和要求,不要随意补充知识点(如半角公式、积化和差与和差化积公式,这些公式只是作为基本训练的素材,结果不要求记忆,更不要求运用). 三角恒等变换与代数恒等变换、圆的几何性质等都有紧密联系,推导两角差的余弦公式的过程比较集中地反映了这种联系,从中体现了丰富的数学思想.从数学变换的角度看,三角恒等变换与代数恒等变换既有相同之处又有各自特点.相同之处在于它们都是运用一定的数学工具对相应的数学式子作“只变其形不变其质”的数学运算,对其结构形式进行变换.由于三角函数式的差异不仅表现在其结构形式上,而且还表现在角及其函数类型上,因此三角恒等变换常常需要先考虑式子中各个角之间的关系,然后以这种关系为依据来选择适当的三角公式进行变换,这是三角恒等变换的主要特点.教学中应当引导学生以一般的数学(代数)变换思想为指导,加强对三角函数式特点的观察,在类比、特殊化、化归等思想方法上多作引导,同时要注意体会三角恒等变换的特殊性.五注意问题(1)精心设计,突出重点. (2)准确把握、控制难度. (3)加强联系,强调思想.(4)问题引导,提高能力.

    注意事项

    本文(人教版高中数学必修4第三章《三角恒等变换》教材分析与教学建议.doc)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开