欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    《多边形的内角和外角和》教案新部编本.doc

    • 资源ID:4220914       资源大小:727.50KB        全文页数:12页
    • 资源格式: DOC        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《多边形的内角和外角和》教案新部编本.doc

    教师学科教案 20 20 学年度 第_学期 任教学科:_任教年级:_任教老师:_xx市实验学校多边形的内角和外角和教案1教学目标:知识与技能:1叙述多边形的定义2熟记多边形的内角和公式过程与方法:1经历探索多边形内角和公式的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系2探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力情感、态度与价值观:1通过师生共同活动,训练学生的发散性思维,培养学生的创新精神2使学生懂得数学内容普遍存在相互联系,相互转化的特点教学重、难点:教学重点:多边形的内角和教学难点:多边形的内角和的公式推导教学过程:巧设情景问题,引入课题师前面我们学习了三角形、平行四边形,今天我们要学习什么内容呢?请看大屏幕(出示投影片:石英钟、六角螺母、地板砖等)师刚才大家看到许多实物图片,它与数学图形联系起来,你知道它们各是什么图形?生四边形、五边形、六边形、八边形师对,这些在日常生活中经常看到的图形,就是我们这节课要研究的内容多边形讲授新课师什么叫多边形呢?多边形是由一些不在同一直线上的线段依次首尾相连组成的封闭图形我们在初中阶段主要探讨的平面几何所以现在定义的多边形应在同一平面内,即:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫做多边形在定义中应注意:若干条;首尾顺次相连,二者缺一不可多边形有凸多边形和凹多边形之分,如图把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形(如图(2)图(1)的多边形是凹多边形我们探讨的一般都是凸多边形多边形的边、内角、顶点、对角线、内角和的含义与三角形相同,即:边:组成多边形的各条线段叫做多边形的边顶点:每相邻两条边的公共端点叫做多边形的顶点对角线:在多边形中,连结不相邻两个顶点的线段叫做多边形的对角线内角:多边形相邻两边组成的角叫多边形的内角如图:多边形通常以边数命名,多边形有n条边就叫做n边形三角形、四边形都属于多边形,其中三角形是边数最少的多边形多边形的表示方法与三角形、四边形类似可以用表示它的顶点的字母来表示,如可顺时针方向表示,也可逆时针方向表示,如图(3),可表示为五边形ABCDE,也可表示为五边形EDCBA,还可以用下标表示为五边形A1A2A3A4A5,n边形可表示为n边形A1A2A3An(n3的自然数)三角形可用三条边来表示,四边形可用四条边来表示n边形呢?要画多少条边来表示呢?我们可用虚线表示省略的边,其余的边用实线表示如上图,就是n边形A1A2A3Ann边形有n条边,n个顶点,n个内角好,我们了解了多边形的有关概念后,看一幅图及问题(1)上图中广场中心的边缘是一个五边形,你能设法求出它的五个内角的和吗?与同伴交流(2)小明、小亮分别利用下面的图形求出了该五边形的五个内角的和你知道他们是怎么做的吗?(3)还有其他的方法吗?(学生讨论、画图、归纳)生甲(1)求五边形的内角和可以利用量角器测每个内角的度数,然后求出这五个内角的和,即是五边形的内角和为540°也可以把五边形分割成三角形,因为三角形的内角和是180°生乙小明是直接把五边形的五个内角分割在3个三角形中(如图(1),每个三角形的内角和是180°,所以五边形的内角和为3×180°=540°小亮是在五边形内任意取一个点,然后把五边形分割成五个三角形(如图(2),但从图中可以知道,这时多了一个周角,即360°因此,五边形的内角和为:180°×5360°=540°生丙也可以在五边形的任一条边上取一个点,然后这个点与各顶点连结,这时五边形被分割成四个三角形(如图(3),但多了一个平角,即180°,因此,五边形的内角和为:180°×4180°=540°生丁在五边形外任取一点,将这点与五边形的各顶点连结起来,这时五边形被分割成四个三角形,此时,从图中可以看出多出一个三角形因此五边形的内角和为180°×4180°=540°师很不错,同学们回答得很好,在求五边形的内角和时,先把五边形转化成三角形进而求出内角和,这种由未知转化为已知的方法是我们数学中一种非常重要的方法下面大家来“想一想”1按如下图(5)所示的方法,六边形能分成多少个三角形?n边形(n是大于或等于3的自然数)呢?2你能确定n边形的内角和吗?师同学们可以多画几个边数不一样的多边形,来总结归纳分割多边形的方法生甲如图(5),从五边形的一个顶点向和它不相邻的顶点引了两条对角线,这时五边形分成三个三角形;从六边形的一个顶点向和它不相邻的顶点引了三条对角线,这时六边形分成了四个三角形;从七边形的一个顶点向和它不相邻的顶点引四条对角线,这时七边形分成了五个三角形从n边形的一个顶点向和它不相邻的顶点引(n3)条对角线,把n边形分成了(n2)个三角形生乙从n边形的一个顶点出发,向自身和相邻的两个顶点无法引对角线,向其他顶点共引(n3)条对角线,这时n边形被分割成(n2)个三角形,因为每个三角形的内角和是180°,所以n边形的内角和为(n2)·180°师要求n边形的内角和,关键是将n边形分割转化为有公共顶点的三角形;由三角形的内角和得到n边形的内角和即:n边形的内角和为(n2)·180°大家想一想,n边形的内角和公式中,字母n取值有没有范围?生有,必须是大于3的自然数师对,同学们口答一下:12边形的内角和是多少呢?生齐声1800°师很好,要求n边形的内角和,只需把n代入内角和公式:(n2)·180°,即可算出下面大家“想一想”观察下图中的多边形,它们的边、角有什么特点?生这五个多边形,每个多边形的边都相等,内角也都相等师很好,在平面内,内角都相等,边也都相等的多边形叫做正多边形,如上图中的多边形分别为:正三角形、正四边形即正方形、正五边形、正六边形、正八边形正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形下面大家想一想,议一议:1一个多边形的边都相等,它的内角一定都相等吗?2一个多边形的内角都相等,它的边一定都相等吗?3正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?生甲一个多边形的边都相等,它的内角也一定都相等,如正三角形、正方形生乙错的如菱形的四条边相等,但它的内角不一定都相等,所以应该说:一个多边形的边都相等,它的内角不一定都相等生丙一个多边形的内角都相等,它的边不一定都相等,如:矩形的内角都是直角,但它的边未必都相等师同学们从不同角度进行分析,得到了准确的答案,非常好,接下来看第(3)小题生丁因为正多边形的每个内角都相等,且它的内角和为(n2)·180°,所以,正n边形的每个内角为:·180°因此,正三角形的内角是:正方形的内角是:·180°=90°正五边形的内角是:·180°=108°正六边形的内角是:·180°=120°正八边形的内角是:·180°=135°师很好,接下来我们做练习来巩固多边形的内角和公式例1、如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的AC=180º求:B与D的关系分析:本题要求B与D的关系,由于已知AC=180º,所以可以从四边形的内角和入手,就可得到完满的答案解:如图,四边形ABCD中,AC180ºA+B+C+D=(42)×360º=180º,BD=360º(AC)=180º这就是说:如果四边形一组对角互补,那么另一组对角也互补课堂练习1如下图(1)作多边形所有过顶点A的对角线,并分别用字母表示出来(2)求这个多边形的内角和解:(1)如下图:过顶点A的对角线是AC、AD、AE(2)从(1)图中可知:这个六边形被过顶点A的对角线分割成四个三角形,所以,这个多边形的内角和为180°×4=720°也可以利用多边形的内角和公式进行计算即:(62)×180°=720°课时小结本节课我们研究了多边形的定义及其内角和公式,重点探讨了多边形的内角和公式即:n边形的内角和等于(n2)·180°,它揭示了多边形内角和与边数之间的关系课后作业课本P145习题59的1、2、3多边形的内角和外角和教案2教学目标:知识与技能:1认识多边形的外角2熟记多边形的外角和公式过程与方法:1经历探索多边形的外角和公式的过程进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系2探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力情感、态度与价值观:培养学生勇于实践、大胆创新的精神和积极探求客观真理的科学态度,渗透数学中普遍存在的相互联系、相互转化及数学来源实践,又反过来作用于实践的观点教学重、难点:教学重点:多边形的外角和公式及其应用教学难点:多边形的外角和公式的应用教学过程:巧设情景问题,引入课题师大家清早跑步吗?小明每天坚持跑步,他怎样跑步呢?清晨,小明沿一个五边形广场周围的小跑,按逆时针方向跑步(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出1+2+3+4+5吗?你是怎样得到的?师同学们来分组讨论,演示一下(学生6人一组,可实地做一做,让学生体会数学与现实生活的联系)生甲(1)小明每从一条街道转到下一街道时,身体转过的角(如图中)是1、2、3、4、5(2)我们五个人做为五边形的顶点,围成一个五边形,由××伴为小明进行跑步,跑完一圈后,他的身体转过的角度之和是360°(3)由上述知道:1,2,3,4,5分别是小明从一条街道转到下一条街道时,身体转过的角,而他跑一圈,身体转过的角度是360°,因此得:1+2+3+4+5=360°生乙我们讨论的结果和甲同学的一样,只不过求1、2、3、4、5的和时,我们组是先画了一个如投影所示的五边形然后把1、2、3、4、5这五个角剪下,将它们的顶点拼在一起,即各角的顶点重合,这时发现这五个角正好组成了一个周角由此得到:1+2+3+4+5=360°师很好,下面大家来看小亮的思考:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA、OB、OC、OD、OE,得到、,其中:=1,=2,=3,=4,=5、恰好组成一个周角这样,1、2、3、4、5的和等于360°师小亮也验证了大家得到的结论,好,大家看图,1、2、3、4、5不是五边形的角,那是什么角呢?它们的和叫什么呢?生这五个角是五边形的外角,它们的和叫外角和师很好,我们这节课就来探讨多边形的外角、外角和讲授新课师那什么是多边形的外角、外角和呢?我们可类似三角形的外角定义来定义多边形的外角多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和一般地,在多边形的任一顶点处按顺(逆)时针方向可作外角,n边形有n个外角那多边形的外角和是多少呢?我们来回忆一下:三角形的外角和为多少?生齐360°师好,刚才我们又研究了五边形的外角和,它为360°,那大家想一想如果广场的形状是六边形、八边形它们的外角和也等于360°吗?(学生讨论,得出结论)生甲我们通过讨论,演示得到:六边形的外角和是360°,八边形的外角和是360°生乙老师,能不能由此得出:多边形的外角和都等于360°呢?师谁来解决这个问题呢?生丙由五边形、六边形和八边形的外角和都等于360°,不能得出所有多边形的外角和都等于360°,只能是猜想:多边形的外角和都等于360°师能得证吗?生丁因为多边形的外角与它相邻的内角是邻补角,所以,n边形的外角和加内角和等于n·180°,内角和为(n2)·180°,因此,外角和为:n·180°(n2)·180°=360°师很好,由此我们得到了多边形的外角和公式:多边形的外角和都等于360°师由此可知,多边形的外角和与多边形的边数无关,它恒等于360°下面大家来师好,学完了外角和公式,现在我们来应用一下,以熟悉巩固外角和公式例2一个多边形的内角和等于它的外角和的3倍,它是几边形?分析:这是多边形的内角和公式与外角和公式的简单应用根据题意,可列方程解答(让学生动手解答)解:设这个多边形是n边形,则它的内角和是(n2)·180°,外角和等于360°,所以:(n2)·180°=3×360°解得:n=8这个多边形是八边形师好,通过同学们的解答,知道大家基本掌握了多边形的外角和公式,接下来我们通过练习进一步巩固外角和公式课堂练习1一个多边形的外角都等于60°,这个多边形是n边形?解:因为多边形的外角和等于360°,所以根据题意,可知道这个多边形的边数是:360°÷60°=62是否存在一个多边形,它的每个内角都等于相邻外角的?为什么?解:不存在,理由是:如果存在这样的多边形,设它的一个外角为,则对应的内角为180°,于是:×=180°,解得=150°这个多边形的边数为:360°÷150°=24,而边数应是整数,因此不存在这样的多边形课时小结本节课我们探讨了多边形的外角及其外角和公式知道多边形的外角和与多边形的边数无关,它恒等于360°,因而,求解有关多边形的角的计算题;有时直接应用外角和公式会比较简便课后作业课本P147习题5.10的1、2

    注意事项

    本文(《多边形的内角和外角和》教案新部编本.doc)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开