浙江省杭州师范大学附属中学高三上学期第三次月考数学理科试题.doc
-
资源ID:4214519
资源大小:503.50KB
全文页数:8页
- 资源格式: DOC
下载积分:8金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙江省杭州师范大学附属中学高三上学期第三次月考数学理科试题.doc
杭师大附中2010学年高三年级第三次月考卷数学试卷(理科)本试卷分第卷(选择题)和第卷(非选择题)两部分. 总分150分。考试用时120分钟。第卷(选择题 共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中有且只有一项是符合题目要求的.1已知全集.集合,则( )A. B. C. D. 2已知,b都是实数,那么“”是“”的( )A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件3设an是有正数组成的等比数列,为其前n项和。已知,,则( )A B C D 4(x)9的展开式的第3项是() A84x3 B84x3 C36x5 D36x55在ABC中,内角A,B,C的对边分别是a,b,c,若,则A =( )A. B. C. D.6下面给出的四个点中,到直线xy10的距离为,且位于表示的平面区域内的点是()A(1,1)B(1,1) C(1,1) D(1,1)7用数字2,3,5,6,7组成没有重复数字的五位数,使得每个五位数中的相邻的两个数都互质,则得到这样的五位数的概率为( ) A B C D8已知直线xym0与圆x2y22交于不同的两点A、B,O是坐标原点,|,那么实数m的取值范围是()A(2,2) B(2,2)C, D(2,9已知圆的方程x2y24,若抛物线过点A(0,1),B(0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是() A1(y0) B1(y0)C1(x0) D1(x0)10已知以T = 4为周期的函数,其中m > 0,若方程 恰有5个实数解,则m的取值范围为( )A(,)B(,)C(,)D(,)二、填空题(本大题共7小题,每小题4分,共28分,将答案填在题后的横线上。)11设复数满足,则 12设,且,则的值是 (用表示)13已知函数yasin2xbcos2x2(ab0)的一条对称轴方程为x,则函数yasin2xbcos2x2的位于对称轴x左边的第一个对称中心为_14某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形则的表达式为_。15已知函数f(x)是定义在R上的偶函数,定义在R上的奇函数g (x)过点(1,1),且g(x)f(x1),则f(7)f(8)的值为_OACBDP16在RtABC中 ,ABAC1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A、B两点,则这个椭圆的焦距长为 17.如图,四边形OABC是边长为1的正方形,OD3,点P为BCD内(含边界)的动点,设,则的最大值等于 三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤。18(本小题满分14分)设函数(I)求f(x)的值域和最小正周期;(II)设A、B、C为ABC的三内角,它们的对边长分别为a、b、c,若cosC,A为锐角,且,求ABC的面积19(本小题满分14分) 有两辆汽车由南向北驶入四叉路口,各车向左转,向右转或向前行驶的概率相等,且各车的驾驶员相互不认识.(I)规定:“第一辆车向左转,第二辆车向右转”这一基本事件用“(左,右)”表示。又“(直,左)”表示的是基本事件:“第一辆车向前直行,第二车向左转”.请参照上面规定列出两辆汽车过路口的所有基本事件;(II)求至少有一辆汽车向左转的概率;(III)设有辆汽车向左转,求的分布列和数学期望.20(本小题满分14分)在数列an中,a1,并且对于任意nN*,且n>1时,都有an·an1an1an成立,令bn(nN*)(I)求数列bn的通项公式;(II)求数列的前n项和Tn,并证明Tn< .21(本小题满分15分)已知椭圆C的离心率e,长轴的左右端点分别为A1(2,0),A2(2,0)(I)求椭圆C的方程;(II)设直线xmy1与椭圆C交于P,Q两点,直线A1P与A2Q交于点S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由22(本小题满分15分)已知函数(I)求在上的最大值;(II)若对任意的实数,不等式恒成立,求实数的取值范围;(III)若关于的方程在上恰有两个不同的实根,求实数的取值范围解答部分:一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中有且只有一项是符合题目要求的.DDBDA CCACB19解: (I) (左,左);(左,直);(左,右);(直,右);(直,左);(直,直);(右,右);(右,直);(右,左) 基本事件共有9种. 4分(II)至少有一辆汽车向左转的事件数有5种,所求概率P= 5/9. 7分(III)的分布列为012P4/94/91/9 . 14分20解:(1)当n1时,b13,当n2时,bnbn11,数列bn是首项为3,公差为1的等差数列,数列bn的通项公式为bnn2.(2)(理)(),Tn(1)()()()()(),>,<,Tn<.21 22解:(1),令,得或(舍)当时,单调递增;当时,单调递减,是函数在上的最大值(3)由知,令,则当时,于是在上递增;当时,于是在上递减,而,即在上恰有两个不同实根等价于,解得