欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    新课标人教版高一必修5解三角形练习题及答案.doc

    • 资源ID:4213256       资源大小:1.07MB        全文页数:8页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新课标人教版高一必修5解三角形练习题及答案.doc

    第一章 解三角形一、选择题1在中,(1);(2) , (3) ,(4) ;则可求得角的是( )A(1)、(2)、(4) B(1)、(3)、(4)C(2)、(3) D(2)、(4)2在中,根据下列条件解三角形,其中有两个解的是( )A,B,C, D ,3在中,若,则( )A ; B;C; D4在ABC中,已知,则的值为( )A. 或 B. C . D. 5如果满足,的ABC恰有一个,那么的取值范围是( )A B C D或二、填空题6在中,则此三角形的最大边的长为 7在中,已知,则_ _8若钝角三角形三边长为、,则的取值范围是 9在ABC中,AB=3,BC=,AC=4,则边AC上的高为 10. 在中,(1)若,则的形状是 . (2)若sinA=,则的形状是 .三、解答题11. 已知在中,分别是角所对的边. ()求; ()若,求的面积.解:12. 在ABC中,分别为角A、B、C的对边,=3, ABC的面积为6,D为ABC内任一点,点D到三边距离之和为d。求角A的正弦值; 求边b、c; 求d的取值范围解: 13在中,的对边分别为且成等差数列.(I)求B的值; (II)求的范围。解:14在斜三角形ABC中,角A,B,C所对的边分别为a,b,c且.(1) 求角A; (2) 若,求角C的取值范围。解: 15在ABC中,角A,B,C所对边分别为a,b,c,且 ()求角A; ()若 ,试求的最小值解: 16如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号在当时气象条件下,声波在水中的传播速度是1. 5 km/s.(1)设A到P的距离为 km,用表示B,C到P 的距离,并求值;(2)求静止目标P到海防警戒线a的距离(结果精确到0.1 km)解: 高一下期中数学复习:必修 第一章 解三角形 参考答案一、选择题1在中,(1);(2) , (3) ,(4) ;则可求得角的是(D)A(1)、(2)、(4) B(1)、(3)、(4)C(2)、(3) D(2)、(4)2在中,根据下列条件解三角形,其中有两个解的是(C)A,B,C, D ,3在中,若,则(A)A ; B;C; D4在ABC中,已知,则的值为( B )A. 或 B. C . D. 5如果满足,的ABC恰有一个,那么的取值范围是(D)A B C D或二、填空题6在中,则此三角形的最大边的长为7在中,已知,则_6或3_8若钝角三角形三边长为、,则的取值范围是9在ABC中,AB=3,BC=,AC=4,则边AC上的高为10. 在中,(1)若,则的形状是等腰三角形. (2)若sinA=,则的形状是直角三角形.三、解答题11. 已知在中,分别是角所对的边. ()求; ()若,求的面积.解: ()因为,则,. ()由,得,则,的面积为.12. 在ABC中,分别为角A、B、C的对边,=3, ABC的面积为6,D为ABC内任一点,点D到三边距离之和为d。求角A的正弦值; 求边b、c; 求d的取值范围解:(1) (2),20,由及20与=3解得b=4,c=5或b=5,c= 4 .(3)设D到三边的距离分别为x、y、z,则,又x、y满足,画出不等式表示的平面区域得:. 13在中,的对边分别为且成等差数列.(I)求B的值; (II)求的范围。解:(I)成等差数列,.由正弦定理得,代入得,,即:.又在中,,,. (II), .,,的范围是.14在斜三角形ABC中,角A,B,C所对的边分别为a,b,c且.(1) 求角A; (2) 若,求角C的取值范围。解: 又,而为斜三角形,. , . ,,即,.15在ABC中,角A,B,C所对边分别为a,b,c,且 ()求角A; ()若 ,试求的最小值解:(),即,.(), , 从而当1,即时,取得最小值 故 16如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号在当时气象条件下,声波在水中的传播速度是1. 5 km/s. (1)设A到P的距离为 km,用表示B,C到P 的距离,并求值; (2)求静止目标P到海防警戒线a的距离(结果精确到0.1 km)解:(1)依题意,PAPB=1. 5 × 8=12 (km),PCPB=1.5×20=30(km )因此 PB(x一12)km,PC=(18x)km. 在PAB中,AB= 20 km, 同理,在PAC中, 由于即 解得(km) (2)作PDa,垂足为D. 在RtPDA中,PD =PAcosAPD=PAcosPAB = (km)答:静止目标P到海防警戒线a的距离约为17. 7km.

    注意事项

    本文(新课标人教版高一必修5解三角形练习题及答案.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开