欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    概率论与数理统计课后习题及答案.doc

    • 资源ID:4201406       资源大小:2.99MB        全文页数:53页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率论与数理统计课后习题及答案.doc

    概率论与数理统计课后习题及答案第1章 三、解答题 1设P(AB) = 0,则下列说法哪些是正确的? (1) A和B不相容; (2) A和B相容; (3) AB是不可能事件; (4) AB不一定是不可能事件; (5) P(A) = 0或P(B) = 0 (6) P(A B) = P(A) 解:(4) (6)正确. 2设A,B是两事件,且P(A) = 0.6,P(B) = 0.7,问: (1) 在什么条件下P(AB)取到最大值,最大值是多少? (2) 在什么条件下P(AB)取到最小值,最小值是多少? 解:因为,又因为即 所以(1) 当时P(AB)取到最大值,最大值是=0.6.(2) 时P(AB)取到最小值,最小值是P(AB)=0.6+0.7-1=0.3. 3已知事件A,B满足,记P(A) = p,试求P(B) 解:因为,即,所以 4已知P(A) = 0.7,P(A B) = 0.3,试求 解:因为P(A B) = 0.3,所以P(A ) P(AB) = 0.3, P(AB) = P(A ) 0.3,又因为P(A) = 0.7,所以P(AB) =0.7 0.3=0.4,. 5 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 解:显然总取法有种,以下求至少有两只配成一双的取法:法一:分两种情况考虑:+ 其中:为恰有1双配对的方法数法二:分两种情况考虑:+ 其中:为恰有1双配对的方法数法三:分两种情况考虑:+ 其中:为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:-法五:考虑对立事件:- 其中:为没有一双配对的方法数法六:考虑对立事件: 其中:为没有一双配对的方法数所求概率为 6在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率 解:(1) 法一:,法二: (2) 法二:,法二: 7将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率 解:设M1, M2, M3表示杯子中球的最大个数分别为1,2,3的事件,则, , 8设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少? 解:设M2, M1, M0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则 , 9口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率 解:设M1=“取到两个球颜色相同”,M1=“取到两个球均为白球”,M2=“取到两个球均为黑球”,则.所以 10 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率 解:这是一个几何概型问题以x和y表示任取两个数,在平面上建立xOy直角坐标系,如图. 任取两个数的所有结果构成样本空间W = (x,y):0 £ x,y £ 1 事件A =“两数之和小于6/5”= (x,y) Î W : x + y £ 6/5因此图? 11随机地向半圆(为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与轴的夹角小于的概率 解:这是一个几何概型问题以x和y表示随机地向半圆内掷一点的坐标,q表示原点和该点的连线与轴的夹角,在平面上建立xOy直角坐标系,如图. 随机地向半圆内掷一点的所有结果构成样本空间 W=(x,y): 事件A =“原点和该点的连线与轴的夹角小于” =(x,y):因此 12已知,求 解: 13设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少? 解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。 设A=“所取两件产品中至少有一件是不合格品”,B=“两件均为不合格品”;, 14有两个箱子,第1箱子有3个白球2个红球,第2个箱子有4个白球4个红球,现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出一个球,此球是白球的概率是多少?已知上述从第2个箱子中取出的球是白球,则从第1个箱子中取出的球是白球的概率是多少? 解:设A=“从第1个箱子中取出的1个球是白球”,B=“从第2个箱子中取出的1个球是白球”,则,由全概率公式得由贝叶斯公式得 15将两信息分别编码为A和B传递出去,接收站收到时,A被误收作B的概率为0.02,而B被误收作A的概率为0.01,信息A与信息B传送的频繁程度为2:1,若接收站收到的信息是A,问原发信息是A的概率是多少? 解:设M=“原发信息是A”,N=“接收到的信息是A”,已知所以由贝叶斯公式得 16三人独立地去破译一份密码,已知各人能译出的概率分别为,问三人中至少有一人能将此密码译出的概率是多少? 解:设Ai=“第i个人能破译密码”,i=1,2,3.已知所以至少有一人能将此密码译出的概率为 17设事件A与B相互独立,已知P(A) = 0.4,P(AB) = 0.7,求. 解:由于A与B相互独立,所以P(AB)=P(A)P(B),且P(AB)=P(A)+ P(B) - P(AB)= P(A)+ P(B) - P(A)P(B)将P(A) = 0.4,P(AB) = 0.7代入上式解得 P(B) = 0.5,所以或者,由于A与B相互独立,所以A与相互独立,所以 18甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是多少? 解:设A=“甲射击目标”,B=“乙射击目标”,M=“命中目标”,已知P(A)=P(B)=1,所以由于甲乙两人是独立射击目标,所以 19某零件用两种工艺加工,第一种工艺有三道工序,各道工序出现不合格品的概率分别为0.3,0.2,0.1;第二种工艺有两道工序,各道工序出现不合格品的概率分别为0.3,0.2,试问: (1) 用哪种工艺加工得到合格品的概率较大些? (2) 第二种工艺两道工序出现不合格品的概率都是0.3时,情况又如何? 解:设Ai=“第1种工艺的第i道工序出现合格品”,i=1,2,3; Bi=“第2种工艺的第i道工序出现合格品”,i=1,2.(1)根据题意,P(A1)=0.7,P(A2)=0.8,P(A3)=0.9,P(B1)=0.7,P(B2)=0.8,第一种工艺加工得到合格品的概率为P(A1A2A3)= P(A1)P(A2)P(A3)=第二种工艺加工得到合格品的概率为P(B1B2)= P(B1)P(B2)=可见第二种工艺加工得到合格品的概率大。(2)根据题意,第一种工艺加工得到合格品的概率仍为0.504,而P(B1)=P(B2)=0.7,第二种工艺加工得到合格品的概率为P(B1B2)= P(B1)P(B2)=可见第一种工艺加工得到合格品的概率大。 1设两两相互独立的三事件A,B和C满足条件ABC = Æ,且已知,求P(A) 解:因为ABC = Æ,所以P(ABC) =0,因为A,B,C两两相互独立,所以由加法公式得 即 考虑到得 2设事件A,B,C的概率都是,且,证明: 证明:因为,所以将代入上式得到整理得 3设0 < P(A) < 1,0 < P(B) < 1,P(A|B) +,试证A与B独立 证明:因为P(A|B) +,所以将代入上式得两边同乘非零的P(B)1-P(B)并整理得到所以A与B独立. 4设A,B是任意两事件,其中A的概率不等于0和1,证明是事件A与B独立的充分必要条件 证明:充分性,由于,所以即两边同乘非零的P(A)1-P(A)并整理得到所以A与B独立. 必要性:由于A与B独立,即且所以一方面另一方面所以 5一学生接连参加同一课程的两次考试第一次及格的概率为p,若第一次及格则第二次及格的概率也为p;若第一次不及格则第二次及格的概率为. (1) 若至少有一次及格则他能取得某种资格,求他取得该资格的概率 (2) 若已知他第二次及格了,求他第第一次及格的概率 解:设Ai=“第i次及格”,i=1,2.已知由全概率公式得(1) 他取得该资格的概率为(2) 若已知他第二次及格了,他第一次及格的概率为 6每箱产品有10件,其中次品从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品为不合格而拒收由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%求检验一箱产品能通过验收的概率 解:设Ai=“一箱产品有i件次品”,i=0,1,2.设M=“一件产品为正品”,N=“一件产品被检验为正品”.已知由全概率公式又由全概率公式得一箱产品能通过验收的概率为 7用一种检验法检验产品中是否含有某种杂质的效果如下若真含有杂质检验结果为含有的概率为0.8;若真含不有杂质检验结果为不含有的概率为0.9;据以往的资料知一产品真含有杂质或真不含有杂质的概率分别为0.4和0.6今独立地对一产品进行三次检验,结果是两次检验认为含有杂质,而有一次认为不含有杂质,求此产品真含有杂质的概率 解:A=“一产品真含有杂质”,Bi=“对一产品进行第i次检验认为含有杂质”,i=1,2,3. 已知独立进行的三次检验中两次认为含有杂质,一次认为不含有杂质,不妨假设前两次检验认为含有杂质,第三次认为检验不含有杂质,即B1,B2发生了,而B3未发生.又知所以所求概率为由于三次检验是独立进行的,所以 8火炮与坦克对战,假设坦克与火炮依次发射,且由火炮先射击,并允许火炮与坦克各发射2发,已知火炮与坦克每次发射的命中概率不变,它们分别等于0.3和0.35.我们规定只要命中就被击毁试问 (1) 火炮与坦克被击毁的概率各等于多少? (2) 都不被击毁的概率等于多少? 解:设Ai=“第i次射击目标被击毁”,i=1,2,3,4. 已知所以 (1) 火炮被击毁的概率为 坦克被击毁的概率为 (2) 都不被击毁的概率为 9甲、乙、丙三人进行比赛,规定每局两个人比赛,胜者与第三人比赛,依次循环,直至有一人连胜两次为止,此人即为冠军,而每次比赛双方取胜的概率都是,现假定甲乙两人先比,试求各人得冠军的概率 解:Ai=“甲第i局获胜”, Bi=“乙第i局获胜”,Bi=“丙第i局获胜”,i=1,2,.,已知,由于各局比赛具有独立性,所以在甲乙先比赛,且甲先胜第一局时,丙获胜的概率为同样,在甲乙先比赛,且乙先胜第一局时,丙获胜的概率也为丙得冠军的概率为甲、乙得冠军的概率均为第二章2一、填空题:1. ,2. ,k = 0,1,n3. 为参数,k = 0,1,4. 5. 6. 7. 8. 9. X-112pi0.40.40.2 分析:由题意,该随机变量为离散型随机变量,根据离散型随机变量的分布函数求法,可观察出随机变量的取值及概率。10. 分析:每次观察下基本结果“X1/2”出现的概率为,而本题对随机变量X取值的观察可看作是3重伯努利实验,所以11. ,同理,P| X | £ 3.5 =0.8822.12. .13. ,利用全概率公式来求解:二、单项选择题:1. B,由概率密度是偶函数即关于纵轴对称,容易推导F(-a)=2. B,只有B的结果满足3. C,根据分布函数和概率密度的性质容易验证4. D,可以看出不超过2,所以,可以看出,分布函数只有一个间断点.5. C, 事件的概率可看作为事件A(前三次独立重复射击命中一次)与事件B(第四次命中)同时发生的概率,即 .三、解答题(A)1(1)X123456pi分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有(这里指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为多算了一次)或种,故,其他结果类似可得.(2) 2X-199pi注意,这里X指的是赢钱数,X取0-1或100-1,显然.3,所以.4(1) ,(2) 、 、 ;5(1) ,(2) ,(3) .6(1) . (2) .7解:设射击的次数为X,由题意知,其中8=400×0.02.8解:设X为事件A在5次独立重复实验中出现的次数,则指示灯发出信号的概率 ;9. 解:因为X服从参数为5的指数分布,则,则10. (1)、由归一性知:,所以.(2)、.11. 解 (1)由F(x)在x=1的连续性可得,即A=1.(2).(3)X的概率密度.12. 解 因为X服从(0,5)上的均匀分布,所以 若方程有实根,则,即 ,所以有实根的概率为 13. 解: (1) 因为 所以 (2) ,则,经查表得,即,得;由概率密度关于x=3对称也容易看出。(3) ,则,即,经查表知,故,即;14. 解: 所以 ,;由对称性更容易解出;15. 解 则 上面结果与无关,即无论怎样改变,都不会改变;16. 解:由X的分布律知px-2-10134101921013所以 Y的分布律是Y0149pY0123pZ的分布律为 17. 解 因为服从正态分布,所以,则,当时,则当时,所以Y的概率密度为;18. 解,所以19. 解:,则当时,当时,20. 解: (1) 因为所以(2) ,因为, 所以(3) 当时, 当时, 所以 ,因为,所以四应用题1解:设X为同时打电话的用户数,由题意知设至少要有k条电话线路才能使用户再用电话时能接通的概率为0.99,则,其中查表得k=5.2解:该问题可以看作为10重伯努利试验,每次试验下经过5个小时后组件不能正常工作这一基本结果的概率为1-,记X为10块组件中不能正常工作的个数,则, 5小时后系统不能正常工作,即,其概率为3解:因为,所以 设Y表示三次测量中误差绝对值不超过30米的次数,则,(1) .(2) .4解: 当时,是不可能事件,知, 当时,Y和X同分布,服从参数为5的指数分布,知, 当时,为必然事件,知,因此,Y的分布函数为 ;5解:(1) 挑选成功的概率;(2) 设10随机挑选成功的次数为X,则该,设10随机挑选成功三次的概率为:,以上概率为随机挑选下的概率,远远小于该人成功的概率3/10=0.3,因此,可以断定他确有区分能力。(B)1. 解:由概率密度可得分布函数,即,易知;2. 解: X服从的均匀分布,又则,-11P所以Y的分布律为3. 解:,;4. 证明:因是偶函数,故,所以.5. 解:随机变量X的分布函数为 ,显然, ,当时,是不可能事件,知,当时,当时,是必然事件,知,即 。6. (1)当时,即时,当时,即y>1时,所以;(2), 当时,为不可能事件,则, 当时,则, 当时,则,根据得 ;(3),当时,当时,所以 ;7. (1) 证明:由题意知。,当时,即,当时,当时,故有,可以看出服从区间(0,1)均匀分布;(2) 当时, 当时, 当时, 由以上结果,易知,可以看出服从区间(0,1)均匀分布。第三章1解:(X,Y)取到的所有可能值为(1,1),(1,2),(2,1)由乘法公式:PX=1,Y=1=PX=1PY=1|X=1|=2/3´1/2=/3同理可求得PX=1,Y=1=1/3; PX=2,Y=1=1/3(X,Y)的分布律用表格表示如下:YX1211/31/321/302 解:X,Y所有可能取到的值是0, 1, 2(1) PX=i, Y=j=PX=iPY=j|X=i|= , i,j=0,1,2, i+j£2或者用表格表示如下: YX01203/286/281/2819/286/28023/2800 (2)P(X,Y)ÎA=PX+Y£1=PX=0, Y=0+PX=1,Y=0+PX=0,Y=0=9/143 解:P(A)=1/4, 由P(B|A)=得P(AB)=1/8由P(A|B)=得P(B)=1/4(X,Y)取到的所有可能数对为(0,0),(1,0),(0,1),(1,1),则PX=0,Y=0=)=P( (A)-P(B)+P(AB)=5/8PX=0,Y=1=P(B)=P(B-A)=P(B)-P(AB)=1/8PX=1,Y=0=P(A)=P(A-B)=P(A)-P(AB)=1/8PX=1,Y=1=P(AB)=1/84.解:(1)由归一性知:1=, 故A=4(2)PX=Y=0(3)PX<Y= (4)F(x,y)=即F(x,y)=5.解:PX+Y³1=6 解:X的所有可能取值为0,1,2,Y的所有可能取值为0,1,2, 3.PX=0,Y=0=0.53=0.125; 、PX=0,Y=1=0.53=0.125PX=1,Y=1=, PX=1,Y=2=PX=2,Y=2=0.53=0.125, PX=2,Y=3=0.53=0.125X,Y 的分布律可用表格表示如下: YX0123Pi.00.1250.125000.25100.250.2500.52000.1250.1250.25P.j0.1250.3750.3750.12517. 解:8. 解:(1)所以 c=21/4(2) 9 解:(X,Y)在区域D上服从均匀分布,故f(x,y)的概率密度为10 解: 当0<x£1时,即,11解:当y£0时, 当y>0时,所以,12 解:由得13解:Z=max(X,Y),W=min(X,Y)的所有可能取值如下表pi0.050.150.20.070.110.220.040.070.09(X,Y)(0,-1)(0,0)(0,1)(1,-1)(1,0)(1,1)(2,-1)(2,0)(2,1)max(X,Y)001111222Min(X,Y)-100-101-101Z=max(X,Y),W=min(X,Y)的分布律为Z012Pk0.20.60.2 W -101Pj 0.160.530.3114 解: 由独立性得X,Y的联合概率密度为则PZ=1=PX£Y=PZ=0=1-PZ=1=0.5故Z的分布律为Z01Pk0.50.515 解:同理,显然,所以X与Y不相互独立.16 解:(1) 利用卷积公式:求fZ(z)=(2) 利用卷积公式:17 解:由定理3.1(p75)知,X+YN(1,2)故18解:(1) (x>0)同理, y>0显然,所以X与Y不相互独立(2).利用公式19解:并联时,系统L的使用寿命Z=maxX,Y因XE(a),YE(b),故 串联时,系统L的使用寿命Z=minX,Y (B)组1 解:PX=0=a+0.4, PX+Y=1=PX=1,Y=0+PX=0,Y=1=a+bPX=0,X+Y=1=PX=0,Y=1=a由于X=0|与X+Y=1相互独立, 所以PX=0, X+Y=1=PX=0 PX+Y=1即 a=(a+0.4)(a+b) (1)再由归一性知: 0.4+a+b+0.1=1 (2)解(1),(2)得 a=0.4, b=0.12 解: (1) (2) 利用公式计算3.解:(1) FY(y)=PY£y=PX2£y当y<0时,fY(y)=0当y³0时,从而,(2) F(-1/2,4)=PX£-1/2,Y£4= PX£-1/2,X2£4=P-2£X£-1/2=4.解:PXY¹0=1-PXY=0=0即 PX=-1,Y=1+PX=1,Y=1=0由概率的非负性知,PX=-1,Y=1=0,PX=1,Y=1=0由边缘分布律的定义,PX=-1= PX=-1,Y=0+ PX=-1,Y=1=1/4得PX=-1,Y=0=1/4再由PX=1= PX=1,Y=0+ PX=1,Y=1=1/4得PX=1,Y=0=1/4再由PY=1=PX=-1,Y=1+ PX=0,Y=1+ PX=1,Y=1= PX=0,Y=1知PX=0,Y=1=1/2最后由归一性得:PX=0,Y=0=0(X,Y)的分布律用表格表示如下: YX01PX=i-11/401/4001/21/211/401/4PY=j1/21/21(2) 显然,X和Y不相互独立,因为PX=-1,Y=0¹ PX=-1PY=05 解:X与Y相互独立,利用卷积公式计算 6.解:(X,Y)(G)设F(x)和f(s)分别表示S=XY的分布函数和密度函数F(s)=PXY<ss<0时,Fs(s)=0s³0时,所以,于是,S=Y概率密度为7.解:由全概率公式:FU(u)=PU£u=X+Y£u=PX=1PX+Y£u|X=1+ PX=2PX+Y£u|X=2= PX=1P1+Y£u+ PX=2P2+Y£u=0.3´FY(u-1)+0.7´FY(u-2)所以,fU(u) =0.3´fY(u-1)+0.7´fY(u-2)8. 解:(1) (2) 如图所示,当z<0时,FZ(z)=0; 当z³2时,FZ(z)=1 当0£z<2时:综上所述,所以Z的概率密度为:9.解:(1) (2) (3) 10.解:(1)PZ£1/2|X=0=PX+Y£1/2|X=0=PY£1/2=1/2(2) 由全概率公式:FZ(z)=PZ£z=PX+Y£z=PX=1PX+Y£z|X=1+PX=0PX+Y£z|X=0=PX=-1PX+Y£z|X=-1= PX=1P1+Y£z+PX=0PY£z=PX=-1P-1+Y£z=1/3´FY(z-1)+ FY(z)+ FY(z+1)从而,fZ(z) =1/3´fY(z-1)+ fY(z)+ fY(z+1)=11.解:如图,当z<0时,FZ(z)=0; 当z³1时,FZ(z)=1 当0£z<1时:综上得:12Z的概率密度为12 解:当z<0时,FZ(z)=0;当z³0时,所以,Z的概率密度为 第四章4三、解答题1. 设随机变量的分布律为X 202pi0.40.30.3求,解:E (X ) = = +0+2= -0.2E (X 2 ) = = 4+ 0+ 4= 2.8E (3 X +5) =3 E (X ) +5 =3+5 = 4.42. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望解:记掷1颗骰子所掷出的点数为Xi,则Xi 的分布律为记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验,E (Xi ) =1/6×(1+2+3+4+5+6)=21/6E (X ) =8×21/3=283. 某图书馆的读者借阅甲种图书的概率为p1,借阅乙种图书的概率为p2,设每人借阅甲乙图书的行为相互独立,读者之间的行为也是相互独立的 (1) 某天恰有n个读者,求借阅甲种图书的人数的数学期望(2) 某天恰有n个读者,求甲乙两种图书至少借阅一种的人数的数学期望解:(1) 设借阅甲种图书的人数为X ,则XB(n, p1),所以E (X )= n p1(2) 设甲乙两种图书至少借阅一种的人数为Y , 则Y B(n, p),记A =借甲种图书, B =借乙种图书,则p =A B= p1+ p2 - p1 p2所以E (Y )= n (p1+ p2 - p1 p2 )4. 将n个考生的的录取通知书分别装入n个信封,在每个信封上任意写上一个考生的姓名、地址发出,用X表示n个考生中收到自己通知书的人数,求E(X)解:依题意,XB(n,1/n),所以E (X ) =1.5. 设,且,求E(X)解:由题意知XP(),则X的分布律P =,k = 1,2,.又P=P, 所以 解得 ,所以E(X) = 6.6. 设随机变量X的分布律为问X的数学期望是否存在?解:因为级数, 而发散,所以X的数学期望不存在.7. 某城市一天的用电量X(十万度计)是一个随机变量,其概率密度为求一天的平均耗电量 解:E(X) =6. 8. 设某种家电的寿命X(以年计)是一个随机变量,其分布函数为求这种家电的平均寿命E(X)解:由题意知,随机变量X的概率密度为 当>5时, ,当£5时,0.E(X) =所以这种家电的平均寿命E(X)=10年.9. 在制作某种食品时,面粉所占的比例X的概率密度为求X的数学期望E(X)解:E(X) =1/4 10. 设随机变量X的概率密度如下,求E(X)解:.11. 设,求数学期望解:X的分布律为, k = 0,1,2,3,4,X取值为0,1,2,3,4时,相应的取值为0,1,0,-1,0,所以 12. 设风速V在(0,a)上服从均匀分布,飞机机翼受到的正压力W是V的函数:,(k > 0,常数),求W的数学期望解:V的分布律为,所以 13. 设随机变量(X, Y )的分布律为 Y X01203/289/283/2813/143/14021/2800求E(X),E(Y ),E(X Y )解:E(X)=0×(3/28+9/28+3/28)+1×(3/14+3/14+0)+ 2×(1/28+0+0)= 7/14=1/2 E(Y)=0×(3/28+3/14+1/28)+1×(9/28+3/14+0)+ 2×(3/28+0+0)=21/28=3/4 E(X-Y) = E(X)- E(Y)=1/2-3/4= -1/4.14. 设随机变量(X,Y)具有概率密度,求E(X),E(Y),E(XY)解:E(X)= 15. 某工厂完成某批产品生产的天数X是一个随机变量,具有分布律X10 11 12 13 14pi0.2 0.3 0.3 0.1 0.1所得利润(以元计)为,求E(Y),D(Y)解: E(Y) = E1000(12-X)=1000×(12-10)×0.2+(12-11)×0.3+(12-12)×0.3+(12-13)×0.1+(12-14)×0.1 = 400E(Y2) = E10002(12-X)2=10002(12-10)2×0.2+(12-11)2×0.3+(12-12)2×0.3+(12-13)2×0.1+(12-14)2×0.1=1.6×106D(Y)=E(Y2)-E(Y)2=1.6×106- 4002=1.44×106 16. 设随机变量X服从几何分布 ,其分布律为其中0 < p < 1是常数,求E(X),D(X)解:令q=1- p ,则 D(X) = E(X2)- E(X) =2q/p2+1/p-1/p2 = (1-p)/p217. 设随机变量X的概率密度为,试求E(X),D(X)解:E(X)= D(X)= E(X2)= 18. 设随机变量(X,Y)具有D(X) = 9,D(Y) = 4,求,解:因为,所以=-1/6×3×2=-1,19. 在题13中求Cov(X,Y),rXY解:E(X) =1/2, E(Y) =3/4, E(XY)=0×(3/28+9/28+3/28+3/14+1/28)+1×3/14+2×0+4×0=3/14, E(X2)= 02×(3/28+9/28+3/28)+12×(3/14+3/14+0)+ 22×(1/28+0+0)=4/7, E(Y2)= 02×(3/28+3/14+1/28)+12×(9/28+3/14+0)+ 22×(3/28+0+0)=27/28, D(X)= E(X2) -E(X)2 = 4/7-(1/2)2= 9/28, D(Y)= E(Y2)- E(Y)2=27/28-(3/4)2= 45/112, Cov(X,Y)= E(XY)- E(X) E(Y) =3/14- (1/2) ×(3/4)= -9/56, rXY = Cov(X,Y) /()=-9/56 ¸ ()= -/520. 在题14中求Cov(X,Y),rXY,D(X + Y)解:,21. 设二维随机变量(X, Y )的概率密度为试验证X和Y是不相关的,但X和Y不是相互独立的解:,所以Cov(X,Y)=0,rXY =0,即X和Y是不相关.当x2 + y21时,f ( x,y)fX ( x) f Y(y),所以X和Y不是相互独立的22. 设随机变量(X, Y )的概率密度为验证X和Y是不相关的,但X和Y不是相互独立的解:由于f ( x,y)的非零区域为D: 0 < x < 1, | y |< 2x ,所以Cov(X,Y)=0,从而,因此X与Y不相关 . 所以,当0<x<1, -2<y<2时,所以X和Y不是相互独立的 .四、应用题.1. 某公司计划开发一种新产品

    注意事项

    本文(概率论与数理统计课后习题及答案.doc)为本站会员(仙人指路1688)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开