《整式乘除与因式分解》知识点归纳总结精编版.doc
-
资源ID:4198494
资源大小:293.50KB
全文页数:7页
- 资源格式: DOC
下载积分:16金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
《整式乘除与因式分解》知识点归纳总结精编版.doc
整式乘除与因式分解知识点归纳总结一、幂的运算:1、同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:2、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。如:幂的乘方法则可以逆用:即 如:3、积的乘方法则:(是正整数)。积的乘方,等于各因数乘方的积。如:(=4、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不变,指数相减。如:5、零指数; ,即任何不等于零的数的零次方等于1。二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。如: 。7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即(都是单项式)。如:= 。8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。9、平方差公式:注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。 如: = 10、完全平方公式:完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。公式的变形使用:(1); ;(2)三项式的完全平方公式: 11、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。 如:12、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:三、因式分解的常用方法1、提公因式法(1)会找多项式中的公因式;公因式的构成一般情况下有三部分:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数;(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项(3)注意点:提取公因式后各因式应该是最简形式,即分解到“底”;如果多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系数是正的2、公式法运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;常用的公式:平方差公式: a2b2 (ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)23、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式进行分解。特点:(1)二次项系数是1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。思考:十字相乘有什么基本规律?例1.已知05,且为整数,若能用十字相乘法分解因式,求符合条件的.解析:凡是能十字相乘的二次三项 式ax2+bx+c,都要求 >0而且是一个完全平方数。于是为完全平方数,例2、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5。 由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。 1 2解:= 1 3 = 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。例3、分解因式:解:原式= 1 -1 = 1 -6 (-1)+(-6)= -7练习1、分解因式(1) (2) (3)(二)二次项系数不为1的二次三项式条件:(1) (2) (3) 分解结果:=例4、分解因式:分析: 1 -2 3 -5 (-6)+(-5)= -11解:=练习3、分解因式:(1) (2) (三)二次项系数为1的齐次多项式例5、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。 1 8b 1 -16b 8b+(-16b)= -8b 解:= =练习4、分解因式(1) (2) (3)(四)二次项系数不为1的齐次多项式例9、 例10、 1 -2y 把看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式= 解:原式=练习9、分解因式:(1) (2)综合练习5、(1) (2)(3) (4)(5) (6)(7) (8) 3、在数学学习过程中,学会利用整体思考问题的数学思想方法和实际运用意识。如:对于任意自然数n,都能被动24整除。1若的运算结果是,则的值是( ) A-2 B2 C-3 D32若为整数,则一定能被( )整除 A2 B3 C4 D53若x2+2(m-3)x+16是完全平方式,则m的值等于( )A.3B.-5C.7.D.7或-14如图,矩形花园ABCD中,AB=,AD=,花园中建有一条矩形道路LMQP及一条平行四边形道路RSTK,若LM=RS=,则花园中可绿化部分的面积为( )ABCD5分解因式:_.6下表为杨辉三角系数表的一部分,它的作用是指导读者按规律写出形如(为正整数)展开式的系数,请你仔细观察下表中的规律,填出展开式中所缺的系数。则7. 3x(7-x)=18-x(3x-15); 8. (x+3)(x-7)+8(x+5)(x-1).9.,求、的值10探索题: 试求的值判断的值的个位数是几?