《平面图形的认识(一)》全章复习与巩固(基础)知识讲解.doc
-
资源ID:4198439
资源大小:402.50KB
全文页数:8页
- 资源格式: DOC
下载积分:16金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
《平面图形的认识(一)》全章复习与巩固(基础)知识讲解.doc
平面图形的认识(一)全章复习与巩固(基础)知识讲解责编:某老师【学习目标】 1掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3正确理解“相交”、“互相平行”、“互相垂直”等概念,发展空间想象力.【知识网络】【要点梳理】要点一、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线 (2)线段的性质:两点之间线段最短要点诠释:本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB,如下图:4线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BCAC,或ACa+b;ADAB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点如下图,有:. 要点诠释:线段中点的等价表述:如上图,点M在线段上,且有,则点M为线段AB的中点.除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P均为线段AB的四等分点,则有.(4)线段的延长线:如下图,图称为延长线段AB,或称为反向延长线段BA;图称为延长线段BA,或称为反向延长线段AB. 图中延长的部分叫做原线段的延长线.要点二、角1角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:角的两种定义是从不同角度对角进行的定义.当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.2.角的分类锐角直角钝角平角周角范围090°90°90°<<180°180°360°3.角的度量1周角360°,1平角180°,1°60,160.要点诠释:度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一成60.4.角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是AOB的平分线,所以12AOB,或AOB2122.类似地,还有角的三等分线等.5余角、补角、对顶角 (1)余角、补角:若1+290°, 则1与2互为余角.其中1是2的余角,2是1的余角.若1+2180°,则1与2互为补角.其中1是2的补角,2是1的补角.结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.只考虑数量关系,与位置无关“等角是相等的几个角”,而“同角是同一个角”(2)对顶角:对顶角相等要点三、平行与垂直1. 同一平面内的两条直线的位置关系:平行与相交. 平行用符号“”表示.要点诠释:只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.2.垂线 (1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足垂直用符号“”表示,如下图(2)垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直垂线段最短(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离【典型例题】类型一、概念或性质的理解1.(2016春永登县期中)下列叙述中,正确的是()A在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B不相交的两条直线叫平行线C两条直线的铁轨是平行的D我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角【思路点拨】根据直线的关系,平行线的定义,可得答案【答案】C【解析】解:A、在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A错误;B、在同一个平面内,不相交的两条直线叫平行线,故B错误;C、两条直线的铁轨是平行的,故C正确;D、我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选:C【总结升华】本题考查了平行线,在同一个平面内,不相交的两条直线叫平行线,注意相等的角不一定是对顶角举一反三:【变式】(2015春通辽期末)下列说法不正确的是()A过任意一点可作已知直线的一条平行线B同一平面内两条不相交的直线是平行线C在同一平面内,过直线外一点只能画一条直线与已知直线垂直D平行于同一直线的两直线平行解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误B、C、D是公理,正确故选【答案】A类型二、角的度量2.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了_度【思路点拨】画出图形,利用钟表表盘的特征解答【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形举一反三:【变式】100°60°5210 【答案】39°750类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法3. 如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD2:3:4,又M、N分别是AB、CD的中点,已知AD90cm,求MN的长【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,AB+BC+CDAD90 cm, 2x+3x+4x90,x10,AB20 cm, BC30 cm, CD40 cm,MNMB+BC+CNAB+BC+CD10+30+2060(cm)【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长举一反三:【变式】如图所示,已知AOCBOD100°,且AOB:AOD2:7,求BOC和COD的度数【答案】 解:设AOB的度数为2x,则AOD的度数为7x 由AODAOB+BOD及BOD100°, 可得7x2x+100° 解得x20°,所以AOB2x40° 所以BOCAOC-AOB100°-40°60°, CODBOD -BOC100°-60°40°2.分类的思想方法 4.以AOB的顶点O为端点的射线OC,使AOC:BOC5:4 (1)若AOB18°,求AOC与BOC的度数; (2)若AOBm,求AOC与BOC的度数【答案与解析】解:(1)分两种情况:OC在AOB的外部,可设AOC5x,则BOC4x得AOBx,即x18°所以AOC90°,BOC72°OC在AOB的内部,可设AOC5x,则BOC4xAOBAOC+BOC9x所以9x18°, 则x2°所以AOC10°,BOC8°(2)仿照(1),可得:若AOBm,则AOC,BOC,或AOC5m,BOC4m 【总结升华】本题中的已知条件没有明确地说明OC在AOB的内部或外部,所以两个问题都必须分类讨论举一反三:【变式1】已知线段AB8cm,在直线AB上画线段BC3cm,求线段AC的长【答案】解:分两种情况:(1)如图(1),ACABBC835(cm);(2)如图(2),ACAB+BC8+311(cm)所以线段AC的长为5cm或11cm【变式2】下列判断正确的个数有 ( ) 已知A、B、C三点,过其中两点画直线一共可画三条 过已知任意三点的直线有1条 三条直线两两相交,有三个交点 A0个 B1个 C2个 D3个【答案】A3.类比的思想方法【高清课堂:图形认识初步章节复习399079 类比思想例5】5.(1)如图,线段AD上有两点B、C,图中共有_条线段. (2)如图,在AOD的内部有两条射线OB、OC,则图中共有 个角.【答案】(1)6;(2)6.【解析】(1)以A为端点的线段有3条,同样以B,C,D为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:(条).(2)以射线OA为一边的角有3个,同样以OB,OC,OD为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:(个).【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容.类型四、平行与垂直6.(2015春印江县期末)如图,点B在点A的南偏东60°方向,点C在点B的北偏东30°方向,且BC=12km,则点C到直线AB的距离是 【答案】12km【解析】解:ADBE,EBA=A=60°,ABC=ABE+CBE=90°,点C到直线AB的距离是BC,即12km,故答案为:12km【总结升华】本题考查的是方位角和点到直线的距离,正确理解方位角和点到直线的距离的概念是解题的关键举一反三:【变式1】梯形中,()是平行的A上底和下底 B上底和腰 C两条腰【答案】A【变式2】已知:如图,在ABC中,ACB=90°,AB=13cm,BC=5cm,AC12cm ,且CDAB于D则CD的长 【答案】