欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    2022年湘教版七下《积的乘方》立体精美课件.ppt

    • 资源ID:4196292       资源大小:1.09MB        全文页数:45页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年湘教版七下《积的乘方》立体精美课件.ppt

    ,整式的乘法,第2章 整式的乘法,导入新课,讲授新课,当堂练习,课堂小结,2.1.2 幂的乘方与积的乘方,第2课时 积的乘方,七年级数学下(XJ)教学课件,1.理解并掌握积的乘方法则及其应用.(重点)2.会运用积的乘方的运算法则进行计算.(难点),我们居住的地球,情境引入,大约103km,你知道地球的体积大约是多少吗?,球的体积计算公式:,地球的体积约为,导入新课,问题引入,1.计算:(1)10102 103=_;(2)(x5)2=_.,x10,106,2.(1)同底数幂的乘法:aman=(m,n都是正整数).,am+n,(2)幂的乘方:(am)n=(m,n都是正整数).,amn,底数不变,指数相乘,指数相加,其中m,n都是正整数,(am)n=amn,aman=am+n,想一想:同底数幂的乘法法则与幂的乘方法则有什么相同点和不同点?,讲授新课,问题1 下列两题有什么特点?,底数为两个因式相乘,积的形式.,这种形式为积的乘方,我们学过的幂的乘方的运算性质适用吗?,互动探究,同理:,(乘方的意义),(乘法交换律、结合律),(同底数幂相乘的法则),问题2 根据乘方的意义及乘法交换律、结合律进行计算:,=anbn.,证明:,思考问题:积的乘方(ab)n=?,猜想结论:,因此可得:(ab)n=anbn(n为正整数).,(ab)n=anbn(n为正整数),推理验证,积的乘方,等于把积的每一个因式分别_,再把所得的幂_.,(ab)n=anbn(n为正整数),想一想:三个或三个以上的积的乘方等于什么?,(abc)n=anbncn(n为正整数),积的乘方法则,乘方,相乘,例1 计算:(1)(2a)3;(2)(-5b)3;(3)(xy2)2;(4)(-2x3)4.,解:(1)原式=,(2)原式=,(3)原式=,(4)原式=,=8a3;,=-125b3;,=x2y4;,=16x12.,(2)3a3,(-5)3b3,x2(y2)2,(-2)4(x3)4,方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方,计算:(1)(5ab)3;(2)(3x2y)2;(3)(3ab2c3)3;(4)(xmy3m)2.,针对训练,(4)(xmy3m)2(1)2x2my6mx2my6m.,解:(1)(5ab)3(5)3a3b3125a3b3;,(2)(3x2y)232x4y29x4y2;,(3)(3ab2c3)3(3)3a3b6c927a3b6c9;,(2)(-3a3)2=-9a6;,(3)(-2x3y)3=-8x6y3;,下面的计算对不对?如果不对,怎样改正?,(4)(-ab2)2=a2b4.,练一练,例2 计算:,(1)4xy2(xy2)2(2x2)3;(2)(a3b6)2(a2b4)3.,解:(1)原式=4xy2x2y4(8x6),=32x9y6;,(2)原式=a6b12+(a6b12),=0;,方法总结:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项,如何简便计算(0.04)2004(-5)20042?,议一议,2)2004 54008,=(0.2)4008 54008,=(0.2 5)4008,=14008,(0.04)2004(-5)20042,=1.,解法一:,=(0.04)2004(-5)22004,=(0.0425)2004,=12004,=1.,=(0.04)2004(25)2004,(0.04)2004(-5)20042,解法二:,方法总结:逆用积的乘方公式anbn(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式,再运用此公式可进行简便运算,解:原式,练一练 计算:,当堂练习,2.下列运算正确的是()A.x.x2=x2 B.(xy)2=xy2 C.(x2)3=x6 D.x2+x2=x4,C,1.计算(-x2y)2的结果是()Ax4y2 B-x4y2Cx2y2 D-x2y2,A,3.计算:(1)820160.1252015=_;(2)_;(3)(0.04)2013(-5)20132=_.,8,-3,1,(1)(ab2)3=ab6(),(2)(3xy)3=9x3y3(),(3)(-2a2)2=-4a4(),(4)-(-ab2)2=a2b4(),4.判断:,(1)(ab)8;(2)(2m)3;(3)(-xy)5;(4)(5ab2)3;(5)(2102)2;(6)(-3103)3.,5.计算:,解:(1)原式=a8b8;,(2)原式=23 m3=8m3;,(3)原式=(-x)5 y5=-x5y5;,(4)原式=53 a3(b2)3=125a3b6;,(5)原式=22(102)2=4 104;,(6)原式=(-3)3(103)3=-27 109=-2.7 1010.,(1)2(x3)2x3-(3x3)3+(5x)2x7;(2)(3xy2)2+(-4xy3)(-xy);(3)(-2x3)3(x2)2.,解:原式=2x6x3-27x9+25x2x7=2x9-27x9+25x9=0;,解:原式=9x2y4+4x2y4=13x2y4;,解:原式=-8x9x4=-8x13.,6.计算:,拓展提升:7.如果(anbmb)3=a9b15,求m,n的值.,(an)3(bm)3b3=a9b15,a 3n b 3mb3=a9b15,a 3n b 3m+3=a9b15,3n=9,3m+3=15.,n=3,m=4.,解:(anbmb)3=a9b15,课堂小结,幂的运算性质,性质,aman=am+n(am)n=amn(ab)n=anbn(m、n都是正整数),反向运用,am an=am+n(am)n=amn anbn=(ab)n可使某些计算简捷,注意,运用积的乘方法则时要注意:公式中的a、b代表任何代数式;每一个因式都要“乘方”;注意结果的符号、幂指数及其逆向运用(混合运算要注意运算顺序),1.探索并运用平方差公式进行因式分解,体会转化 思想(重点)2.能会综合运用提公因式法和平方差公式对多项式进 行因式分解(难点),导入新课,情境引入,如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?,a2-b2=(a+b)(a-b),讲授新课,想一想:多项式a2-b2有什么特点?你能将它分解因式吗?,是a,b两数的平方差的形式,两个数的平方差,等于这两个数的和与这两个数的差的乘积.,平方差公式:,辨一辨:下列多项式能否用平方差公式来分解因式,为什么?,(1)x2+y2,(2)x2-y2,(3)-x2-y2,-(x2+y2),y2-x2,(4)-x2+y2,(5)x2-25y2,(x+5y)(x-5y),(6)m2-1,(m+1)(m-1),例1 分解因式:,a,a,b,b,a2-b2=,解:(1)原式=,2x,3,2x,2x,3,3,(2)原式,a,b,典例精析,方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.,分解因式:(1)(ab)24a2;(2)9(mn)2(mn)2.,针对训练,(2m4n)(4m2n),解:(1)原式(ab2a)(ab2a),(ba)(3ab);,(2)原式(3m3nmn)(3m3nmn),4(m2n)(2mn),当场编题,考考你!,例2 分解因式:,解:(1)原式(x2)2-(y2)2,(x2+y2)(x2-y2),(x2+y2)(x+y)(x-y);,(2)原式ab(a2-1),ab(a+1)(a-1).,方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式注意分解因式必须进行到每一个多项式都不能再分解因式为止,分解因式:(1)5m2a45m2b4;(2)a24b2a2b.,针对训练,(a2b)(a2b1).,5m2(a2b2)(ab)(ab);,解:(1)原式5m2(a4b4),5m2(a2b2)(a2b2),(2)原式(a24b2)(a2b),(a2b)(a2b)(a2b),例3 把x3y2-x5 因式分解.,解:x3y2-x5,=x3(y2-x2),=x3(y+x)(y-x),分析:x3y2-x5有公因式 x3,应先提出公因式,再用公式进行因式分解.,问题:能直接用公式分解因式吗?,又如:把-4ax2+16ay2因式分解,解:-4ax2+16ay2,=-4a(x2-4y2),=-4a(x+2y)(x-2y),例4 已知x2y22,xy1,求x-y,x,y的值,xy2.,解:x2y2(xy)(xy)2,,xy1,,联立组成二元一次方程组,,解得,方法总结:在与x2y2,xy有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.,例5 计算下列各题:(1)1012992;224.,解:(1)原式(10199)(10199)400;,(2)原式422),=4()(),41007=2800.,方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.,例6 求证:当n为整数时,多项式(2n+1)2-(2n-1)2一定能被8整除,即多项式(2n+1)2-(2n-1)2一定能被8整除,证明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n2=8n,,n为整数,,8n被8整除,,方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除,1.下列多项式中能用平方差公式分解因式的是()Aa2(b)2 B5m220mnCx2y2 Dx29,当堂练习,D,2.分解因式(2x+3)2-x2的结果是()A3(x2+4x+3)B3(x2+2x+3)C(3x+3)(x+3)D3(x+1)(x+3),D,3.若a+b=3,a-b=7,则b2-a2的值为(),A-21 B21 C-10 D10,A,4.把下列各式分解因式:(1)16a2-9b2=_;(2)(a+b)2-(a-b)2=_;(3)9xy3-36x3y=_;(4)-a4+16=_.,(4a+3b)(4a-3b),4ab,9xy(y+2x)(y-2x),(4+a2)(2+a)(2-a),5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值是_.,4,6.已知4m+n=40,2m-3n=5求(m+2n)2-(3m-n)2的值,原式=-405=-200,解:原式=(m+2n+3m-n)(m+2n-3m+n),=(4m+n)(3n-2m),=-(4m+n)(2m-3n),,当4m+n=40,2m-3n=5时,,7.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积,解:根据题意,得,22,2(21.6)2,22,3.2)(6.8 3.2),36(cm2),答:剩余部分的面积为36 cm2.,8.(1)992-1能否被100整除吗?,解:(1)因为 992-1=(99+1)(99-1)=10098,,所以,(2n+1)2-25能被4整除.,(2)n为整数,(2n+1)2-25能否被4整除?,所以992-1能否被100整除.,(2)原式=(2n+1+5)(2n+1-5),=(2n+6)(2n-4),=2(n+3)2(n-2)=4(n+3)(n-2).,课堂小结,平方差公式分解因式,公式,a2-b2=(a+b)(a-b),步骤,一提:公因式;二套:公式;三查:多项式的因式分解有没有分解到不能再分解为止.,

    注意事项

    本文(2022年湘教版七下《积的乘方》立体精美课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开