欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    KdV方程的近似行波解.doc

    • 资源ID:4194709       资源大小:239.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    KdV方程的近似行波解.doc

    KdV方程的近似行波解数学与应用数学专业 学生:王芳 指导教师:高正晖摘 要:本文利用傅里叶级数法,吴消元法获得了KdV方程的多组近似行波解.关键词:KdV方程;傅里叶级数法;吴消元法;近似行波解1 引言随着应用科学的发展,使得描述实际现象的非线性偏微分方程越来越突现其重要性.最早用于描述浅水波现象的KdV方程 .在经过长时间沉寂后,随着孤波理论的发展,方程本身和解的意义被人们重新认识,吸引了科学家的研究兴趣.人们发现各种不同形式的KdV方程可以描述很多领域中的不同现象.如:弱非线性,弱色散的平面波系统运动,等离子体中的磁流体波.而方程的近似解能使物理现象得到进一步的解释.因此,对数学家、物理学家、工程学家及应用科学工作者来说,寻找对应实用背景方程的近似解一直是大家关注的问题.由于非线性方程问题的复杂性和特殊性,非线性方程没有统一的求解办法,因而出现求解非线性方程的各种方法,如直接积分法,混合指数法,齐次平衡法,双曲函数展开法及Baclund变换法等.所有这些方法都有一定的局限性.本文采用傅里叶级数法和吴文俊消元法,获得了非线性方程 KdV 的多组近似行波解.2 KdV方程的求解 方程可表示为: . (1) 现在用傅里叶级数法来求解上述方程,为了求解(1)式.令: (2) 将(2)式代入方程(1)可得常微分方程: . (3) 对(3)式积分一次,取积分常数,得: . (4) 由傅里叶级数法,设方程(4)有如下形式的行波解 . (5) 2.1当时: . (6) 其中为待定系数. 将(6)式代入(4)式 即: (7) 令(7)式中的常数项以及各次项的系数为零,得到如下方程组: 解得: 其中为任意常数. 于是方程(4)有如下形式的解: 2.2当时: (8) 其中为待定系数. 将(8)式代入(4)式即: (9) 令(9)中的常数项及各次项的系数为零,得到如下方程组: (10) 利用吴消元法解上述关于的方程组得: 其中为任意常数. 于是方程(4)有如下形式的解: 3 结束语本文以KdV方程为例,介绍了用傅里叶级数法和吴消元法求解近似行波解的方法,从而揭示了求解非线性发展方程精确行波解理论与技巧.参考文献:1赵长海.KdV方程的显示行解J.海南师范大学学报(自然科学版),2010,23(3):142-146.2高正晖,罗李平,杨柳.求非线性发展方程精确行波解的几种方法J.衡阳师范学院学报,2009,30(6):13-17.3高正晖.(2+1)维CD方程的精确行波解J.科学技术与工程,2009,9(8):2122-2125.4刘洪林,刘洪元.吴消元法的初等代数形式J.沈阳师范大学学报(自然科学版),2005,23(3):248-251.5刘洪元.吴消元法与四元术J.辽宁大学学报(自然科学版),2004,1(4):338-341. 6张克磊.几类非线性波动方程行波解分支的研究D.桂林:桂林科技大学数学研究所,2010.7殷俊.三类广义KdV 方程的行波解D.成都:四川师范大学,2008.8傅海明.一类五阶KdV方程行波解J.鸡西大学学报,2008,8(6):142-143.9叶健芬,蔡桂平,虞凤英.利用双曲函数法研究非线性方程的行波解J.温州师范学院学报(自然科学版) ,2006,27(2):1-4.10李俊焕,郑一.两种方法求KdV方程的新解J.青岛理工大学学报,2011,32(5):123-126.Approximate Traveling Wave Solutions of KdV EquationMathematics and Applied Mathematics Author:Wang Fang Tutor: Gao ZhenghuiAbstract: In this paper, KdV equation groups of traveling wave solutions are obtained by using Fourier series method and Wu elimination method.Key words: KdV equation; Fourier series method ; Wu elimination method ; Approximate traveling wave solutions

    注意事项

    本文(KdV方程的近似行波解.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开