欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    基于SOILDWORKS千斤顶的模拟仿真.doc

    • 资源ID:4194113       资源大小:1.22MB        全文页数:26页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基于SOILDWORKS千斤顶的模拟仿真.doc

    目 录1.绪论12.模拟仿真12.1模拟仿真的概念12.2 模拟仿真在机械教学中的影响22.2.1 传统机械教学中存在的问题22.2.2 教学改革的途径和方法23. SOLIDWORKS的模拟仿真33.1 Solidworks模拟仿真的基本概述33.2 Solidworks动画模拟仿真的概述34.基于SOLIDWORKS千斤顶的仿真模拟设计实例44.1 千斤顶的三维实体建模的过程44.1.1 顶垫的三维实体建模过程44.1.2 螺旋杆的三维实体建模过程64.1.3绞杠的三维实体建模过程94.1.4螺套的三维实体建模过程104.1.5底座的三维实体建模过程144.2千斤顶装配体的装配164.3 千斤顶动画演示的生成184.3.1千斤顶爆炸图和解除爆炸图的生成过程184.3.2 千斤顶模拟图生成过程215. 结 论23致 谢24参考文献251.绪论SolidWorks有全面的零件实体建模功能,变量化的草图轮廓绘制,驱动参数改变特征的大小和位置,丰富的数据转换接口使SolidWorks可以将几乎所有的机械CAD 软件集成到现在的设计环境中来,在SolidWorks的模拟功能中,不仅可以做机构的运动分析,模拟机构的运行过程,还可同时将运动过程进行演示,但是这种演示只能在SolidWorks中进行观看,但在新版本的SolidWorks中,结合使用模拟功能和运用插件Animator制作动画,可以真实地反映机构的运动过程,并把这个运动过程制成avi格式的动画文件,用于诸多播放器中随时、随地地进行演示。SoildWorks为实现用户可以更加快捷方便的使用模拟仿真功能,从而进行几次开发,SolidWorks 的开发通常是利用SolidWorks 公司提供的功能齐全的API 函数库,使用Visual C + 或者Visual Basic 语言设计完成的。这样的工作对于软件开发企业来说比较简单,而一旦二次开发软件交付用户使用,理解和修改代码的工作对于用户来说将变得十分困难。下面的讨论就是基于用户只具有基本的计算机操作能力,没有软件开发能力的前提之下,如何绕开代码修改,仍能够对二次开发软件进行补充和升级的四种方法,以满足企业创新和发展的需要【1】。基于此为更方便进行机械教学,我运用Solidworks三维模拟仿真功能,对千斤顶进行零件的三维实体建模,然后将零件的三维实体进行装配,再利用插件Animator制作动画,对千斤顶的装配体进行动画演示,做出它的爆炸图、解除爆炸图和模拟运动图。2.模拟仿真2.1模拟仿真的概念模拟仿真就是用模型(物理模型或数学模型)来模仿实际系统,代替实际系统来进行实验和研究。事实上,习惯定义的模拟仿真,即用模型来模仿实际系统进行实验和研究,从来就是产品开发中的常用技术手段。计算机运动仿真作为计算机仿真技术的一个重要分支,可以归入虚拟现实技术VR(Virtual Reality)的范畴,它汇集了计算机图形学、多媒体技术、实时计算技术、人机接口技术等多项关键技术。作为一门新兴的高技术,己经成为工程技术领域计算机应用的重要方向【7】。2.2 模拟仿真在机械教学中的影响2.2.1 传统机械教学中存在的问题传统的机械类课程休系一般采用二维设计平台进行教学,所存在的主要问题如下:  (1)传统的二维设计仅仅用于设计工程图,无法满足后续CAE/CAM/PDM等课程的信息需求。  (2)以二维设计为主线展开教学,耗时过大,又不便于掌握和理解。  (3)课程体系松散,没有考虑课程之间的相互关系,无法形成产品从设计到制造整个生命周期的信息链条。  (4)传授的知识陈旧,无法体系现代制造技术的特点,因而也无法满足用人单位的需要。  (5)设计、制图、修改工作大,使学生无法把主要经历放在创新设计上。因而也不利于学生综合创新能力的培养【6】。2.2.2 教学改革的途径和方法 工程制图教学改革:在工程制图课程教学中,大幅度增加三维设计的内容,改变传统设计以二维-三维-二维的传统教学模式,运用Solidworks系统进行二维实体设计技术,采用新的三维-二维-三维的教学新模式。    机械基础课程教学改革:把Solidworks引入到这些课程的教学中可以极大地提高学牛的学习效率和学习的积极性,也为应用型、创新型人才培养奠定了素质基础。Solidworks软件不仅可以进行机械产品设计、还可以进行装配、运动学和动力学分析。 课程设计教学改革:引入Solidworks后,学生的学习积极性提高了,最后设计的作品还可以进行装配体的爆炸动画以及装配动画,设计的效果很快就可以进行评价,一个成功的设计使学生的学习很有成就感,进一步加强了付专业的认识。 数控技术教学改革:Solidworks软件也充分体现了现代制造工程的特点。它提供了无缝集成的CAMWorks擂件数控加工环境,该环境提供数控车、数控铣、数控线切割、加工中心的编程等内容,基本可以满足现代数控加工技术的需求。 毕业设计中的应用:毕业设汁是大学生最后的一个集中性学习和实践环节。该环节中我们大量地引人了Solidworks软件的应用。比如,注塑模具设计的整个过程都可以在Solidwork环境下进行。设计流程图为:产品模型模具分模注塑分析模具装配模具加工。综合创新能力的培养:在技术进步的大背景下,产品的制造和加工工艺越来越精细,产品的成品品质越来越精致、优良。表现在产品的性能特征方面是产品的功能日益强大化,产品的形态特征上表现为品种的多样化,在操作、控制上越来越简单方便化【2】。3. Solidworks的模拟仿真3.1 Solidworks模拟仿真的基本概述SolidWorks是世界上第一款完全基于Windows的3D CAD软件 ,自1995年问世以来 ,以其优异的三维设计功能 ,操作简单等一系列的优点 ,极大地提高了设计效率 ,在与同类软件的激烈竞争中已经确立了它的市场地位 ,已经成为三维机械设计软件的标准。利用SolidWorks不仅可以生成二维工程图,而且可以生成三维零件,用户可以利用这些三维零件来建立二维工程图及三维装配体。SolidWorks采用双向关联尺寸驱动机制,设计者可以指定尺寸和各实体间的几何关系,改变尺寸会改变零件的尺寸与形状,并保留设计意图。Solidworks用户界面非常人性化,便于操作 。在Solidworks的标准菜单中包含了各种用于创建零件特征和基准特征的命令 。其中基础实体特征主要有拉伸凸台基体 、旋转凸台基体等 。在基础实体特征上可添加圆角 、倒角 、肋 、抽壳 、拔模及异型孔 、线性阵列 、圆角阵列 、镜像等放置特征,这些特征的创建对于实体造型的完整性非常重要 。在处理复杂的几何形状时还需要其他高级特征选项,包括扫描 、放样凸台基体及参考几何体中基准轴 、基准面这些定位特征等 。通过以上特征造型技术在Solidwork中能设计出需要的实体特征【11】。3.2 Solidworks动画模拟仿真的概述先启动 Animator插件 , 单击菜单“工具”“插件”,单击Animator前的选项栏 。此后出现Animator中第1个加入的零件十分重要,它是整个装配体的的工具栏 。在Solidworks中Animator的操作都装配基础,Solidworks软件已默认第1个插入零件为是在工作区底部,可单击工作区底部的“模型”或者非运动体,其他所有的装配体零件都是以此为基础,“动画”的标签,单击模型或动画标签即可实现模型本装配选择传动轴为装配参照体 。调入零件后,要或动画操作的切换 。在生成仿真动画时,用Animator插件对千斤顶主要零件大致进行以下3 步操作: 切换到动画界面; 根据千斤顶运动的时间,拖动时间滑杆到相应的位置; 拖动螺旋杆和绞杠运动,使其达到动画序列末端应达到的新位置,这样就实现了工作原理的动态仿真仿真动画以 AVI 格式保存 ,可以得到很好的推广和应用【3】 。4.基于SOLIDWORKS千斤顶的仿真模拟设计实例4.1 千斤顶的三维实体建模的过程4.1.1 顶垫的三维实体建模过程 顶垫的三维实体建模过程如下:(1)单击标准工具栏中的“新建”工具,新建一个零件文件。(2)在特征管理器设计树中选择“前视基准面”,单击(草图绘制)工具,进行草图1的绘制。(3)单击(中心线)工具,过草图原点绘制一条垂直的对称虚线。(4) 以中心线作为基准,单击(直线)画一条直线,然后根据图纸单击(智能尺寸)来设定直线的尺寸,然后单击(确定),运用此方法,画出所需要的所有直线,以及确定它的尺寸。(5)单击(圆心/起/终点圆弧)画出图纸所要求的直线与直线之间的圆角,在圆的参数设置(如图1)中设定所需圆角的半径,然后单击(确定),或者单击(切线弧)画出与直线相切的圆角,绘制出顶垫草图(如图2)。 图1 圆的参数设置图2 顶垫草图 图3 顶垫的旋转体(6)单击(退出草图),单击(旋转凸台/基体)进行旋转生成实体,在选项中设定旋转范围,然后单击(确定),生成旋转体(如图3),生成顶垫实体(如图4)。 图4 顶垫实体4.1.2 螺旋杆的三维实体建模过程螺旋杆的三维实体建模过程如下:(1)单击标准工具栏中的“新建”工具,新建一个零件文件。(2)在特征管理器设计树中选择“前视基准面”,单击(草图绘制)工具,进行草图1的绘制。(3)单击(中心线)工具,过草图原点绘制一条垂直的对称虚线。(4) 以中心线作为基准,单击(直线)画一条直线,然后根据图纸单击(智能尺寸)来设定直线的尺寸,然后单击(确定),运用此方法,画出所需要的所有直线,以及确定它的尺寸。(5)单击(3点圆弧)根据图纸运用三点圆弧画出顶部的圆弧,然后单击(确定)。形成螺旋杆草图(如图5)。(6)单击退出草图,单击(旋转凸台/基体)进行旋转生成实体,在选项中设定旋转范围,然后单击(确定),生成旋转体,生成实体(如图6)。 图5 螺旋杆早草图 图6 螺旋杆实体(1)(7)单击(圆角)画出螺旋杆上图纸所要求的圆角(如图7)。(8)单击(倒角)画出螺旋杆上图纸所要求的倒角(如图8)。 图7 螺旋杆实体(2) 图8 螺旋杆实体(3)(9)再次单击(草图绘制)工具,在上圆柱体上单击(圆),根据图纸画出圆的位置极其尺寸,再次单击退出草图,单击(拉伸切除),在选项中(如图9)点击完全贯穿,然后单击(确定),再与此圆孔成90°再次重复本次操作。10)再次单击(草图绘制)工具,进行草图2的绘制,设定基准面2,单击(直线)画一条直线,然后根据图纸单击(智能尺寸)来设定直线的尺寸,然后单击(确定),根据图纸数据画出一个等腰梯形,在顶部菜单中点击插入曲线螺旋线,绘制出螺旋线,在螺距和圈数参数设置中(如图10)根据底圆柱长度选择适当的选项画出螺旋线,单击(确定),单击(退出草图),单击(扫描),绘制出螺纹。生成螺旋杆实体(如图11)。图9 拉伸切除选项 图10 螺距圈数参数设置图11 螺旋杆实体(4)4.1.3绞杠的三维实体建模过程绞杠的三维实体建模过程如下:(1)单击标准工具栏中的“新建”工具,新建一个零件文件。(2)在特征管理器设计树中选择“前视基准面”,单击(草图绘制)工具,进行草图1的绘制。(3)单击(中心线)工具,过草图原点绘制一条垂直的对称虚线。(4) 以中心线作为基准,单击(直线)画一条直线,然后根据图纸单击(智能尺寸)来设定直线的尺寸,然后单击(确定),运用此方法,画出所需要的所有直线,以及确定它的尺寸,生成绞杠草图(如图12)。 图12 绞杠草图(5)单击(退出草图),单击(旋转凸台/基体)进行旋转生成实体,在旋转参数设置中(如图13)中设定旋转范围,然后单击(确定),生成旋转体(如图14),生成实体(如图16)。 图13 旋转参数设置 图14 绞杠旋转体(6)单击(倒角)画出螺旋杆上图纸所要求的倒角(如图15)。图15 绞杠实体(1)(7)生成绞杠实体。 图16 绞杠实体(2)4.1.4螺套的三维实体建模过程螺套的三维实体建模过程如下:(1)单击标准工具栏中的“新建”工具,新建一个零件文件。(2)在特征管理器设计树中选择“前视基准面”,单击(草图绘制)工具,进行草图1的绘制。(3)单击(中心线)工具,过草图原点绘制一条垂直的对称虚线。 (4) 以中心线作为基准,单击(直线)画一条直线,然后根据图纸单击(智能尺寸)来设定直线的尺寸,然后单击(确定),运用此方法,画出所需要的所有直线,以及确定它的尺寸,生成螺套草图(如图17)。 图17 螺套草图 (5)单击(退出草图),单击(旋转凸台/基体)进行旋转生成实体,在旋转参数设置(如图18)中设定旋转范围,然后单击(确定),生成旋转体(如图19),生成实体(如图20)。 图18 旋转参数设置图19 螺套旋转体 图20 螺套实体(1)(6)单击(草图绘制)工具,进行草图2的绘制,设定基准面2,单击(直线)画一条直线,然后根据图纸单击(智能尺寸)来设定直线的尺寸,然后单击(确定),根据图纸数据画出一个等腰梯形,在顶部菜单中点击插入曲线螺旋线,绘制出螺旋线,根据底圆柱长度在螺距和圈数参数设置(如图21)中输入适当的参数,画出螺旋线,单击(确定),单击(退出草图),单击(扫描),绘制出螺纹。生成螺旋杆实体(如图22)。 图21 螺距和圈数的参数设置 图22 螺套实体(2)4.1.5底座的三维实体建模过程底座的三维实体建模过程如下:(1)单击标准工具栏中的“新建”工具,新建一个零件文件。(2)在特征管理器设计树中选择“前视基准面”,单击(草图绘制)工具,进行草图1的绘制。(3)单击(中心线)工具,过草图原点绘制一条垂直的对称虚线。(4) 以中心线作为基准,单击(直线)画一条直线,然后根据图纸单击(智能尺寸)来设定直线的尺寸,然后单击(确定),运用此方法,画出所需要的所有直线,以及确定它的尺寸。(5)单击(圆心/起/终点圆弧)画出图纸所要求的直线与直线之间的圆角,在圆角参数设置(如图23)中设定所需圆角的半径,然后单击(确定),或者单击(切线弧)画出与直线相切的圆角,绘制出顶垫草图(如图24)。 图23 圆角参数设置 图24 底座草图(6)单击(退出草图),单击(旋转凸台/基体)进行旋转生成实体,在旋转参数设置(如图25)中设定旋转范围,然后单击(确定),生成旋转体(如图26),生成底座实体(如图27)。 图25 旋转参数设置图26 底座旋转体 图27 底座实体4.2千斤顶装配体的装配装配方法如下:(1)单击标准工具栏中的“新建”工具,单击(装配体),新建一个装配体文件。(2)单击(插入零部件),浏览要打开的文件,点击(确定)。(3)插入千斤顶的主干零件螺旋杆,然后插入顶垫,用移动零件,单击(配合),在配合列表(如图28)中选择“同心轴”,“配合选择”中选择螺旋杆和顶垫的大小相等的圆周,单击(确定)。(4)再插入螺套,用移动零件,单击(配合),在配合列表(如图28)中“”选择“同心轴”,”配合选择”中选择螺旋杆和螺套的大小相等的圆周,点击高级配合(如图29),在菜单中选择齿轮,让螺旋杆和螺套的螺纹进行啮合,单击(确定)。(5)再插入底座,用移动零件,单击(配合),在配合列表(如图28)中选择“同心轴”和“重合”,“配合选择”中选择螺套和底座的大小相等的圆周和上表面,单击(确定)。(6)最后插入绞杠,用移动零件,单击(配合),在配合列表中(如图28)选择“重合”,“配合选择”中选择螺旋杆和绞杠,使螺旋杆上的圆的圆心和绞杠的轴线相重合,单击(确定)。(7)生成装配列表(如图30)。(8)配合完毕,生成千斤顶的装配体(如图31)。图28配合选择选项 图29 高级配合选项图30 装配体配合列表图31 千斤顶装配体4.3 千斤顶动画演示的生成4.3.1千斤顶爆炸图和解除爆炸图的生成过程千斤顶爆炸图和解除爆炸图的生成过程如下:(1)先启动 Animator插件 , 单击菜单“工具”“插件”,单击Animator前的选项栏 。此后出现Animator中第1个加入的零件十分重要,它是整个装配体的的工具栏 。(2)单击(打开)打开装配图(千斤顶),点击图下方的(动画),在动画一栏(如图32)右侧选项中右键点击第一个,在视图定向中选择等轴测,再次右键点击选择所有,将时间轴拉至15秒处。(3)单击(爆炸视图),先后将千斤顶的顶垫、绞杠、螺旋杆、底座分别拉至固定位置,在左侧爆炸会出现图标,然后单击(确定)。(4)在动画一栏左侧选项中单击(动画向导),在动画向导菜单中点击“爆炸”,点击”下一步”,将“时间长度”设置为15秒,将“开始时间”设置为2秒,点击“完成”。 再次单击(动画向导),在动画向导菜单中点击“解除爆炸”, 点击”下一步”,将“时间长度”设置为15秒,将“开始时间”设置为18秒,点击“完成”。单击(播放)观看生成后的爆炸视图,最后点击(保存)将生成的爆炸视图储存为AVI格式进行储存。形成爆炸视图(如图33-37)。 图32 动画生成选项图33 爆炸图动画演示(1)图34 爆炸图动画演示(2)图35 爆炸图动画演示(3) 图36 爆炸图动画演示(4)图37 爆炸图动画演示(5)4.3.2 千斤顶模拟图生成过程千斤顶模拟图生成过程如下:(1)打开Solidworks软件,单击(打开)打开装配图(千斤顶),点击图下方的(动画),在动画一栏右侧选项中右键点击第一个,在视图定向中选择等轴测,再次右键点击选择所有,将时间轴拉至15秒处。(2)单击(模拟),选择“旋转马达”一项,在图上点击螺旋杆,将螺旋杆旋转拉出,点击(确定),再次单击(模拟),选择“线性马达”一项,在图上点击绞杠,将绞杠线性插入到螺旋杆的孔中,点击(确定)。单击(播放)观看生成后的爆炸视图,最后点击(保存)将生成的爆炸视图储存为AVI格式进行储存。形成模拟视图(如图38-39)。图38 模拟图动画演示(1)图39 模拟图动画演示(2) 5. 结 论在整个毕业设计阶段,通过对SolidWorks软件知识的学习,我了解到了Solidworks的基本原理和具体运用方法。并且能够运用SolidWorks软件对各种零件进行三维实体建模,掌握了利用Animator插件对装配体进行动画演示。在本文中我利用SolidWorks软件对千斤顶进行了三维造型设计,并利用配置完成了对千斤顶的三维实体设计和动画演示制作,但还有很多不理解的地方需要更加努力学习。致 谢本文是在我的指导老师的精心指导下完成的。衷心感谢我的指导老师,在整个毕业设计阶段,我得到了指导老师的精心指导,在思想上、生活上也受到的真挚的关心和热心的帮助。她严谨的治学态度、渊博的学识、精湛的学术造诣、诲人不倦的精神以及虚怀若谷的气度给我留下了深刻的印象,使我受益匪浅,将永远激励我在将来的学习和工作中不懈努力,不断进步!在此我也非常感谢同学们在这段时间对我学习软件的帮助!在论文完成之际,谨向我的导师和同学表示诚挚的谢意!参考文献1李晓燕,钱炜,仲梁维,Solidworks在毕业设计中的应用J,上海电力学院学报,2002.2(6):59-602繆朝东,Solidworks在机械制图教学中的应用研究,重庆工业高等专科学校学报J,2004.3(6):37-393安爱琴,宋长源,王宏强,聂永芳,基于Solidworks的液压泵工作原理动态仿真J,煤矿机械,2007.12(12):89-924褚莲娣,基于Solidworks的3D家居产品造型设计J,机械管理开发,2008.2(4):8-95蒋亮,黄维菊,肖泽仪,丁文武,邹庆,基于Solidworks的常规型抽油机三维动态仿真J,机械制造与研究,2008.5(9):84-866张书田,袁立军,仝国伟,基于Solidworks2007的减速器虚拟装配与运动仿真J,河北神风重型机械有限公司,2008(24):717余泽通,杨彬彬,宋长源,基于Solidworks的齿轮泵工作原理动态仿真研究J,河南科技学院报,2008.3(9):85-878祝永健,基于Solidworks的机械制图教学改进与应用J,文教资料,2008.28(6):27-289沈嵘枫,林宇洪,基于Solidworks的螺旋叶轮设计分析J,福建农林大学学报(自然科学报),2008.3(5):334-33610卫江洪,基于Solidworks的连杆机构的运动分析与仿真J,机械工程与自动化,2008.146(2):77-8111党兴武,靳岚,机械设计与制造-基于SolidWorks的机构运动模拟J,2006412仝美娟,冯小宁,基于Solidworks的数控加工工程仿真系统的设计J,现代制造工程,2005(1):41-4213蔡慧林,戴建强,席晨飞,基于Solidworks的应力分析和运动仿真的研究J,机械设计与制造,2008.1(1):92-9414陈立新,党玉功,用VBA在Solidworks中实现高级动画J,水利电力机械,2006.10(10):63-6515张淑娟,贾爱莲,段晓峰,基于Solidworks软件的减速器三维设计及运动仿真J,东华大学学报,2006.5(10):105-10816刘小年,郭纪林.工程制图习题集M.高等教育出版社。200517陈立德,械设计基础教程M,等教育出版社。2004

    注意事项

    本文(基于SOILDWORKS千斤顶的模拟仿真.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开