微分中值定理与导数的应用习题解答.docx
第三章 微分中值定理与导数的应用答案§3.1 微分中值定理1 填空题()函数在上使拉格朗日中值定理结论成立的是()设,则有3 个实根,分别位于区间中2选择题()罗尔定理中的三个条件:在上连续,在内可导,且,是在内至少存在一点,使成立的( B )A必要条件B充分条件 C充要条件D既非充分也非必要条件()下列函数在上满足罗尔定理条件的是(C )A.B. C. D.()若在内可导,且是内任意两点,则至少存在一点,使下式成立( B )AB在之间CD3证明恒等式:证明: 令,则,所以为一常数设,又因为,故4若函数在内具有二阶导数,且,其中,证明:在内至少有一点,使得证明:由于在上连续,在可导,且,根据罗尔定理知,存在, 使 同理存在,使 又在上符合罗尔定理的条件,故有,使得5证明方程有且仅有一个实根证明:设,则,根据零点存在定理至少存在一个, 使得另一方面,假设有,且,使,根据罗尔定理,存在使,即,这与矛盾故方程只有一个实根6 设函数的导函数在上连续,且,其中是介于之间的一个实数 证明: 存在, 使成立.证明:由于在内可导,从而在闭区间内连续,在开区间内可导又因为,根据零点存在定理,必存在点,使得同理,存在点,使得因此在上满足罗尔定理的条件,故存在, 使成立7. 设函数在上连续, 在内可导. 试证:至少存在一点, 使 证明:只需令,利用柯西中值定理即可证明.8证明下列不等式()当时,证明: 设,函数在区间上满足拉格朗日中值定理的条件,且, 故, 即 ()因此,当时,()当时,证明:设,则函数在区间上满足拉格朗日中值定理得条件,有因为,所以,又因为,所以,从而§3.1 洛毕达法则1 填空题()() 0 ()=()1选择题()下列各式运用洛必达法则正确的是( B )AB C 不存在D=() 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )ABC D3求下列极限()解: =()解:=()解:()解:()解:,()解:()解:()解: =()解: 因为,所以=1§3.3 泰勒公式按的幂展开多项式解: , 同理得,且由泰勒公式得:=2求函数的带有佩亚诺型余项的阶麦克劳林公式解:因为,所以 =3求一个二次多项式,使得解:设,则,故 ,则 为所求4利用泰勒公式求极限解:因为 ,所以 =,故 5 设有三阶导数,且,证明在内存在一点,使证明: 因为 ,所以由麦克劳林公式得:(介于0与之间),因此 ,由于,故§3.4函数的单调性与曲线的凹凸性1填空题()函数的单调增加区间是,单调减少区间()若函数二阶导数存在,且,则在上是单调增加()函数在内单调增加,则()若点(1,3)为曲线的拐点,则,曲线的凹区间为,凸区间为2单项选择题()下列函数中,( A )在指定区间内是单调减少的函数.A.B.C.D.()设,则在区间内( B)A.单调增加,曲线为凹的B. 单调减少,曲线为凹的 C. 单调减少,曲线为凸的单调增加,曲线为凸的()在内可导,且,当时,则( D )A. 任意B. 任意C. 单调增 D. 单调增()设函数在上二阶导数大于0, 则下列关系式成立的是( B )A. B. C. D. 2求下列函数的单调区间()解:,当时,,所以函数在区间为单调增加; 当时,所以函数在区间为单调减少()解:,当,或时,,所以函数在区间为单调增加;当时,所以函数在区间为单调减少()解:,故函数在单调增加3证明下列不等式()证明: 对任意实数和, 成立不等式证明:令,则,在内单调增加.于是, 由 , 就有 , 即()当时, 证明:设,由于当时,,因此在单调递增, 当时, , 故在单调递增,当时, 有.故当时, 因此()当时,证明:设,,当,所以在单调递增,当时, , 故在单调递增, 从而当时, 有. 因此当时,4 讨论方程(其中为常数)在内有几个实根解:设 则在连续,且,由,得为内的唯一驻点在上单调减少,在上单调增加 故为极小值,因此在的最大值是,最小值是()当或时,方程在内无实根;()当时,有两个实根;() 当时,有唯一实根5试确定曲线中的a、b、c、d,使得处曲线有水平切线,为拐点,且点在曲线上解:,,所以解得:6求下列函数图形的拐点及凹或凸的区间()解:,令,得,当时不存在当或时,当或时,故曲线在上是凸的, 在区间和上是凹的,曲线的拐点为()拐点及凹或凸的区间解:,当时,不存在;当时,故曲线在上是凸的, 在上是凹的,是曲线的拐点,7利用凹凸性证明: 当时, 证明:令, 则, 当时, 故函数的图形在上是凸的,从而曲线在线段(其中)的上方,又, 因此,即§3.5 函数的极值与最大值最小值1填空题()函数取极小值的点是() 函数在区间上的最大值为,最小值为 2选择题() 设在内有二阶导数,问还要满足以下哪个条件,则必是的最大值?(C)A是的唯一驻点 B是的极大值点C在内恒为负 D不为零() 已知对任意满足,若,则(B)A. 为的极大值 B. 为的极小值C. 为拐点 D. 不是极值点, 不是拐点()若在至少二阶可导, 且,则函数在处( )A 取得极大值 B 取得极小值 C 无极值 D 不一定有极值3 求下列函数的极值()解:由,得,所以函数在点取得极小值()解:定义域为,令得驻点,当时,当时,因此为极大值4 求的在上的最大值与最小值解:由,得,而, 所以最大值为132,最小值为75在半径为的球内作一个内接圆锥体,问此圆锥体的高、底半径为何值时,其体积最大解:设圆锥体的高为, 底半径为,故圆锥体的体积为,由于,因此,由,得,此时由于内接锥体体积的最大值一定存在,且在的内部取得. 现在在内只有一个根,故当, 时, 内接锥体体积的最大6.工厂与铁路线的垂直距离为,点到火车站的距离为.欲修一条从工厂到铁路的公路, 已知铁路与公路每公里运费之比为,为了使火车站与工厂间的运费最省,问点应选在何处?解:设,与间的运费为, 则 (),其中是某一正数由,得.由于, ,其中以为最小,因此当AD=km时,总运费为最省7宽为的运河垂直地流向宽为的运河. 设河岸是直的,问木料从一条运河流到另一条运河去,其长度最长为多少?解: 问题转化为求过点的线段的最大值. 设木料的长度为, ,木料与河岸的夹角为,则,且 ,则,由得, 此时,故木料最长为§3.6函数图形的描绘求的渐近线.解:由 ,所以为曲线的铅直渐近线因为 所以为曲线的斜渐近线2作函数的图形。解:函数的定义域为令,得;令,得列表讨论如下:æ极大值öæ拐点ø由于, ,所以,是曲线的斜渐近线又因为,所以是曲线的铅垂渐近线当时;当时综合上述讨论,作出函数的图形如下232-1§3.7 曲率1 填空题:() 曲线上任一点的曲率为,上任一点的曲率为_0_()曲线在其顶点处曲率为_2_,曲率半径为() 曲线的弧微分2 求常数,使在处与曲线相切,且有相同的凹向与曲率解:由题设可知 函数与在处由相同的函数值,一阶导数值,二阶导数值,故3 曲线弧上哪一点处的曲率半径最小?求出该点的曲率半径解:, 曲线在一点处的曲率为令 , ,当时,故在上单调增加, 因此在上的最大值是, 即在点处的曲率半径最小, 其曲率半径为4求椭圆 在点处的曲率及曲率半径解:因此曲率,曲率半径§3.7方程的近似解1. 试证明方程在区间内有唯一的实根,并用切线法求这个根的近似值,使误差不超过0.01.证明: 令,函数在单调递增在上连续,且,故方程在区间内有唯一的实根求近似值的过程略第三章 综合练习题1填空题()0()函数在区间内单调减少,在区间内单调增加()曲线的渐近线是() 1 2求下列极限()解:()解:=3求证当时,证明:令, 则, 当时, ,故在单调增当时,有,即4 设在上可导且,证明:存在点使.证明: 设, 则,且由拉格朗日中值定理知, 存在,使, 即5设函数在上连续,在内具有二阶导数且存在相等的最大值, 且, , 证明: 存在,使得证明: 设分别在取得最大值, 则,且令当时, , 由罗尔定理知, 存在, 使, 进一步由罗尔定理知, 存在,使,即当时,,由零点存在定理可知,存在,使 由于,由前面证明知, 存在,使,即6设,证明方程有且仅有一个正的实根证明:设当,显然只有一个正的实根下考虑时的情况先证存在性:因为在内连续,且,由零点存在定理知,至少存在一个,使,即至少有一个正的实根再证唯一性:假设有,且,使,根据罗尔定理,存在,使,即,从而,这与矛盾故方程只有一个正的实根7对某工厂的上午班工人的工作效率的研究表明,一个中等水平的工人早上8时开始工作,在小时之后,生产出个产品问:在早上几点钟这个工人工作效率最高?解:因为, 令,得又当时,函数在上单调增加;当时,函数在上单调减少故当时,达到最大, 即上午11时这个工人的工作效率最高