欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    外文翻译基于PLC的异步电动机监控系统的设计及应用.doc

    • 资源ID:4151455       资源大小:450.50KB        全文页数:21页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译基于PLC的异步电动机监控系统的设计及应用.doc

    英文原文Design and Implementation of PLC-Based Monitoring Control System for Induction MotorMaria G. Ioannides, Senior Member, IEEEAbstractThe implementation of a monitoring and control system for the induction motor based on programmable logic controller(PLC) technology is described. Also, the implementation of the hardware and software for speed control and protection with the results obtained from tests on induction motor performance is provided. The PLC correlates the operational parameters to the speed requested by the user and monitors the system during normal operation and under trip conditions. Tests of the induction motor system driven by inverter and controlled by PLC prove a higher accuracy in speed regulation as compared to a conventional V f control system. The efficiency of PLC control is increased at high speeds up to 95% of the synchronous speed. Thus, PLC proves themselves as a very versatile and effective tool in industrial control of electric drives.Index TermsComputer-controlled systems, computerized monitoring, electric drives, induction motors, motion control, programmable logic controllers (PLCs), variable-frequency drives, voltage control.I. INTRODUCTIONSince technology for motion control of electric drives became available, the use of programmable logic controllers (PLCs) with power electronics in electric machines applications has been introduced in the manufacturing automation 1, 2.This use offers advantages such as lower voltage drop when turned on and the ability to control motors and other equipment with a virtually unity power factor 3. Many factories use PLCs in automation processes to diminish production cost and to increase quality and reliability 49. Other applications include machine tools with improved precision computerized numerical control (CNC) due to the use of PLCs 10.To obtain accurate industrial electric drive systems, it is necessary to use PLCs interfaced with power converters, personal computers, and other electric equipment 1113. Nevertheless, this makes the equipment more sophisticated, complex, and expensive 14, 15.Few papers were published concerning dc machines controlled by PLCs. They report both the implementation of the fuzzy method for speed control of a dc motor/generator set using a PLC to change the armature voltage 16, and the incorporation of an adaptive controller based on the self-tuning regulator technology into an existing industrial PLC 17. Also, other types of machines were interfaced with PLCs. Thereby, an industrial PLC was used for controlling stepper motors in a five-axis rotor position, direction and speed, reducing the number of circuit components, lowering the cost, and enhancing reliability 18. For switched reluctance motors as a possible alternative to adjustable speed ac and dc drives, a single chip logic controller for controlling torque and speed uses a PLC to implement the digital logic coupled with a power controller 19. Other reported application concerns a linear induction motor for passenger elevators with a PLC achieving the control of the drive system and the data acquisition 20.To monitor power quality and identify the disturbances that disrupt production of an electric plant, two PLCs were used to determine the sensitivity of the equipment 21.Only few papers were published in the field of induction motors with PLCs. A power factor controller for a three-phase induction motor utilizes PLC to improve the power factor and to keep its voltage to frequency ratio constant under the whole control conditions 3. The vector control integrated circuit uses a complex programmable logic device (CPLD) and integer arithmetic for the voltage or current regulation of three-phase pulse-width modulation (PWM) inverters 22. Many applications of induction motors require besides the motor control functionality, the handling of several specific analog and digital I/O signals, home signals, trip signals,On /off/ reverse commands. In such cases, a control unit involving a PLC must be added to the system structure. This paper presents a PLC-based monitoring and control system for a three-phase induction motor. It describes the design and implementation of the configured hardware and software. The test results obtained on induction motor performance show improved efficiency and increased accuracy in variable-load constant-speed-controlled operation. Thus, the PLC correlates and controls the operational parameters to the speed set point requested by the user and monitors the induction motor system during normal operation and under trip conditions.II. PLC AS SYSTEM CONTROLLERA PLC is a microprocessor-based control system, designed for automation processes in industrial environments. It uses a programmable memory for the internal storage of user-orientated instructions for implementing specific functions such as arithmetic, counting, logic, sequencing, and timing 23, 24.A PLC can be programmed to sense, activate, and control industrial equipment and, therefore, incorporates a number of I/O points, which allow electrical signals to be interfaced. Input devices and output devices of the are connected to the PLC and the control program is entered into the PLC memory.In our application, it controls through analog and digital inputs and outputs the varying load-constant speed operation of an induction motor. Also, the PLC continuously monitors the inputs and activates the outputs according to the control program. This PLC system is of modular type composed of specific hardware building blocks (modules), which plug directly into a proprietary bus: a central processor unit (CPU), a power supply unit, input-output modules I/O, and a program terminal. Such a modular approach has the advantage that the initial configuration can be expanded for other future applications such as multimachine systems or computer linking.III. CONTROL SYSTEM OF INDUCTION MOTORIn Fig. 2, the block diagram of the experimental system is illustrated. The following configurations can be obtained from this setup. a) A closed-loop control system for constant speed operation, configured with speed feedback and load current feedback. The induction motor drives a variable load, is fed by an inverter, and the PLC controls the inverter V/F output.b) An open-loop control system for variable speed operation. The induction motor drives a variable load and is fed by an inverter in constant V/F control mode. The PLC is inactivated.c) The standard variable speed operation. The induction motor drives a variable load and is fed by a constant voltage-constant frequency standard three-phase supply. The open-loop configuration b) can be obtained from the closed-loop configuration a) by removing the speed and load feedback. On the other hand, operation c) results if the entire control system is bypassed.IV. HARDWARE DESCRIPTIONThe control system is implemented and tested for a wound rotor induction motor, having the technical specifications given in Table I. The induction motor drives a dc generator, which supplies a variable load. The three-phase power supply is connected to a three-phase main switch and then to a three-phase thermal overload relay, which provides protection against current overloads. The relay output is connected to the rectifier, which rectifies the three-phase voltage and gives a dc input to the insulated gate bipolar transistor (IGBT) inverter. Its technical specifications 25 are summarized in Table II. The IGBT inverter converts the dc voltage input to three-phase voltage output, which is supplied to the stator of the induction motor. On the other hand, the inverter is interfaced to the PLC-based controller. This controller is implemented on a PLC modular system 5, 2628. The PLC architecture refers to its internal hardware and software. As a microprocessor-based system, the PLC system hardware is designed and built up with the following modules 2937: central processor unit (CPU); discrete output module (DOM); discrete input module (DIM); analog outputs module (AOM) analog inputs module (AIM) power supply.Other details of the PLC configuration are shown in Tables III and IV. A speed sensor is used for the speed feedback, a current sensor is used for the load current feedback, and a second current sensor is connected to the stator circuits 32. Thus, the two feedback loops of the closed-loop system are setup by using the load current sensor, the speed sensor, and the AIM. A tachogenerator (permanent magnet dc motor) is used for speed sensing. The induction machine drives its shaft mechanically and an output voltage is produced, the magnitude of which is proportional to the speed of rotation. Polarity depends on the direction of rotation. The voltage signal from the tachogenerator must match the specified voltage range of the AIM (05 V dc and 200-k internal resistance). Other PLC external control circuits are designed using a low-voltage supply of 24 V dc.For the manual control, the scheme is equipped with start, stop, and trip push buttons, as well as with a forward and backward direction selector switch. As shown in Fig. 2, all of the described components: a main switch, an automatic three-phase switch, an automatic single phase switch, a three-phase thermal overload relay, a load automatic switch, signal lamps (forward, backward, start, stop, trip), push buttons (start, stop, trip), a selector switch (for the forward/backward direction of rotation), a speed selector, a gain selector, as well as the PLC modules and the rectifier-inverter are installed in a control panel. The program is downloaded into the PLC from a personal computer PC and an RS232 serial interface.V. SOFTWARE DESCRIPTIONPLCs programming is based on the logic demands of input devices and the programs implemented are predominantly logical rather than numerical computational algorithms. Most of the programmed operations work on a straightforward two-state “on or off” basis and these alternate possibilities correspond to “true or false” (logical form) and “1 or 0” (binary form), respectively. Thus, PLCs offer a flexible programmable alternative to electrical circuit relay-based control systems built using analog devices. The programming method used is the ladder diagram method. The PLC system provides a design environment in the form of software tools running on a host computer terminal which allows ladder diagrams to be developed, verified, tested, and diagnosed. First, the high-level program is written in ladder diagrams, 33, 34. Then, the ladder diagram is converted into binary instruction codes so that they can be stored in random-access memory (RAM) or erasable programmable read-only memory (EPROM). Each successive instruction is decoded and executed by the CPU. The function of the CPU is to control the operation of memory and I/O devices and to process data according to the program. Each input and output connection point on a PLC has an address used to identify the I/O bit. The method for the direct representation of data associated with the inputs, outputs, and memory is based on the fact that the PLC memory is organized into three regions: input image memory (I), output image memory (Q), and internal memory (M). Any memory location is referenced directly using %I, %Q, and %M (Table III).The PLC program uses a cyclic scan in the main program loop such that periodic checks are made to the input variables (Fig. 3). The program loop starts by scanning the inputs to the system and storing their states in fixed memory locations (input image memory I). The ladder program is then executed rung-by-rung. Scanning the program and solving the logic of the various ladder rungs determine the output states. The updated output states are stored in fixed memory locations (output image memory Q). The output values held in memory are then used to set and reset the physical outputs of the PLC simultaneously at the end of the program scan. For the given PLC, the time taken to complete one cycle or the scan time is 0, 18 ms/K (for 1000 steps) and with a maximum program capacity of 1000 steps. The development system comprises a host computer (PC) connected via an RS232 port to the target PLC. The host computer provides the software environment to perform file editing, storage, printing, and program operation monitoring. The process of developing the program to run on the PLC consists of: using an editor to draw the source ladder program, converting the source program to binary object code which will run on the PLCs microprocessor and downloading the object code from the PC to the PLC system via the serial communication port. The PLC system is online when it is in active control of the machine and monitors any data to check for correct operation.A. PLC Speed Control SoftwareIn Fig. 4, the flowchart of the speed control software is illustrated. The software regulates the speed and monitors the constant speed control regardless of torque variation. The inverter being the power supply for the motor executes this while, at the same time, it is controlled by PLCs software. The inverter alone cannot keep the speed constant without the control loop with feedback and PLC. From the control panel, the operator selects the speed setpoint and the forward/backward direction of rotation. Then, by pushing the manual start pushbutton, then the rotation stops. The corresponding input signals are interfaced to the DIM and the output signals to the DOM as shown in Table IV. The AIM receives the trip signal IS from the stator current sensor, the speed feedback signal from the tachogenerator, and the signal from the control panel. In this way, the PLC reads the requested speed and the actual speed of the motor. The difference between the requested speed by the operator and the actual speed of the motor gives the error signal. If the error signal is not zero, but positive or negative, then the PLC according to the computations carried out by the CPU decreases or increases the V/F of the inverter and, as a result, the speed of the motor is corrected.The implemented control is of proportional and integral (PI) type (i.e., the error signal is multiplied by gain KP, integrated, and added to the requested speed). As a result, the control signal is sent to the DOM and connected to the digital input of the inverter to control V/F variations. At the beginning, the operator selects the gain KP by using a rotary resistor mounted on the control panel (gain adjust) and the AIM receives its voltage drop as controller gain signal (010 V). The requested speed is selected using a

    注意事项

    本文(外文翻译基于PLC的异步电动机监控系统的设计及应用.doc)为本站会员(laozhun)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开