电子课程设计报告 USB 声卡功放制作.doc
电子课程设计报告 USB声卡功放制作 姓 名: 专 业: 班 级: 学 号: 指 导 教 师 : 信息科学与工程学院电子信息系 2013 年 7 月 2 日目 录摘 要3前言41.研究背景42.研究意义53.论文章节安排5第1章 设计要求与方案介绍61.1设计要求61.2各类放大器特点介绍6第2章 硬件电路设计92.1原理分析92.2芯片简介12第3章 电路调试153.1调试的设备15 3.2 电路调试153.3测试总结16结 论17参考文献18附 录19摘 要 D类数字音频功率放大器是一种将输入模拟音频信号或PCM(Pulse Code Modulation,脉冲编码调制)数字信息变换成PWM(脉冲宽度调制)或PDM(脉冲密度调制)的脉冲信号,然后用PWM或PDM的脉冲信号去控制大功率开关器件通、断音频功率放大器,也称为开关放大器。近年来,随着MP3、PDA、手机、笔记本电脑、车载音响等便携式多媒体的普及, D类功放以效率高、体积小等优势,比传统的线性功放更受人们的青睐,具有十分重要的应用价值和市场前景。 本文在对传统的音频放大器进行分析的基础上,改进了电路结构,设计了一种基于D类功放的高效率、低失真、免输出滤波器的基于USB的数字音频放大器。USB电脑功放板内置USB数字音频解码,单一USB插头。采用的主要方法如下:将音频信号通过芯片CM102-A构成的电路进行前置放大,电容与CM102-A组和产生的三角波,并通过LM393进行将前置放大的正弦波与三角波进行比较处理,进行脉宽调制产生矩形波,并将矩形波传递到CD40106进行波形的整形及H桥进行的功率放大和保真,最后通过LC震荡电路驱动喇叭工作,实现音频的输出。关键字:放大器比较;D类功率放大;数字音频信号;前言1.研究背景随着现代电子技术的不断发展,集成电路被广泛应用于各类电子电路中。而近十几年来半导体技术的进步,使功率放大电路也得到了飞速的发展和应用。音频功率放大电路是原理上最为基本、应用上最为广泛的功率放大电路。目前大部分音响系统中的功放都是模拟类型,传统的模拟功放按放大器的工作状态可分为:A类、B类、AB类等形式。A类、AB类功放是音响系统中最为常用的功放。传统类音频放大器的一个共同缺点是效率很低,A类音频放大器的理论效率是25%,实际效率大约为15-20%;B类音频放大器的理论最大效率是78.5%;AB类音频放大器的理论效率75%,实际效率在50-70%之间。无论A类,B类还是AB类音频功率放大器,当它们的输出功率小于额定输出功率时,效率就会明显降低,播放动态的语言、音乐时平均工作效率只有30%左右。在半导体设计潮流走向轻薄短小之际,不仅半导体组件本身的封装要小,整个模块的尺寸也变成关键规格。数字音频功放的概念早在20世纪60年代已被提出,但由于当时技术条件的限制,进展一直较慢。1983年,M.B.Sandler等学者提出了D类放大的PCM数字音频功放的基本结构,主要技术要点是如何把PCM信号变成PWM。1999年意大利POWERSOFT公司推出了数字音频功放的商业产品,从此,第4代音频功率放大器数字音频功率放大器进入了工程应用领域,并获得了世界同行的广泛认可,市场日益扩大,数字音频功率放大器已经成为近年来的研究热点之一。全球音视频领域的数字化浪潮以及人们对音视频设备节能环保的要求,迫使人们尽快研究开发高效、节能、易于与数字化设备接口的音频功率放大器。D类数字音频放大器就是在这样的背景下兴起的。目前,D类音频功率放大器在电脑、移动电话、平面电视、LCD显示器以及各种以电池供电的便携式游戏设备等消费类电子产品中已获得广泛的应用。80年代至今,数字功放俨然成为了新一代的宠儿。2.研究意义随着电子技术的迅速发展各种D 类功放的设计方法也层出不穷笔者设计的D 类功放效率可达到86.9%以上在负载是4 时最大输出功率可达71 W 且音质较好基本可满足家庭音响的要求。对于传统的音频功率放大器工作时,直接对模拟信号进行放大,工作期间必须工作于线性放大区,功率耗散较大,虽然采用推挽输出,减少了功率器件的承受功率,但在较大的功率情况下,仍然对功率器件构成极大地威胁,功率输出受到限制。模拟功率放大器还存在以下的特点: 电路复杂,成本高。常常需要设计复杂的电路和过流,过压,过热等保护,体积较大,电路复杂。效率低,输出功率不可能做的很大。D类开关音频功率放大器的工作基于PWM模式:将音频信号与采样频率比较,经过自然采样,得到脉冲宽度与音频信号幅度成成正比变化的PWM波,然后经过驱动电路,加到功率MOS的栅极,控制功率器件的开关,实现放大,将放大的PWM信号送入滤波器,则还原音频信号。D类功率放大器工作于开关状态,理论效率可达100%,实际的运用也可达80%以上。功率器件的耗散功率小,产生热量少,可以大大地减少散热器的尺寸,连续输出功率很容易达到数百瓦。功率MOS有自我保护电路,可以大大的简化保护电路,而且不会引起非线性失真。这样可以更好的跟上了音频领域数字化的浪潮同时也满足了人们对节能环保的要求。具有一定的现实意义。3.论文章节安排本论文大致可分为三个部分:第一部分主要介绍了设计要求和功率放大器的一些基本知识;第二部分主要介绍D类功率放大器的原理和USB音频功放板的设计、CM102A芯片介绍、电路组装与调试;第三部分是论文总结第1章 设计要求与方案介绍1.1设计要求设计一个基于USB供电内有数字音频解码器的电脑功放板,支持XP、vista、Windows7系统。采用D类放大器,以4扬声器计左右声道输出功率0.5W,无需外接电源,USB数字音频解码电路,替代电脑板载声卡,摆脱主板高频干扰,保证音质纯净。组装电路,调试实现音频放大功能,经简单的检测验证。1.2各类放大器特点介绍 A类放大器的主要特点是:放大器的工作点Q设定在负载线的中点附近,晶体管在输入信号的整个周期内均导通。放大器可单管工作,也可以推挽工作。由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。电路简单,调试方便。但效率较低,晶体管功耗大,功率的理论最大值仅有25,且有较大的非线性失真。 由于效率比较低 现在设计基本上不在再使用。 B类放大器的主要特点是:放大器的静态点在(VCC,0)处,当没有信号输入时,输出端几乎不消耗功率。在Vi的正半周期内,Q1导通Q2截止,输出端正半周正弦波;同理,当Vi为负半波正弦波(如图虚线部分所示),所以必须用两管推挽工作。其特点是效率较高(78%),但是因放大器有一段工作在非线性区域内,故其缺点是"交越失真"较大。即当信号在-0.6V至 0.6V之间时, Q1 Q2都无法导通而引起的。所以这类放大器也逐渐被设计师摒弃。 AB类放大器的主要特点是:晶体管的导通时间稍大于半周期,必须用两管推挽工作。可以避免交越失真。交替失真较大,可以抵消偶次谐波失真。有效率相对提高,晶体管功耗也较小。 D类功率放大器主要特点是:用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100,实际电路也可达到8095。随着PWM调制器技术和扩频技术的应用,D类放大器将在音频功放应用领域盛行起来。现代D类放大器除具有AB类放大器的所有优点(即良好的线性和最小的电路板空间)外,更具有高效、低功耗等优点。有多种D类放大器可供选用,以满足各类应用需求。这些应用包括低功耗便携式应用(如蜂窝电话和笔记本电脑),电池寿命、电路板空间和EMI兼容性要求在这类应用中至关重戛还包括大功率应用(如车载音响系统或平板显示器),最大限度降低散热需求和发热量在这类应用中必不可少。D类放大器固然性能出色,也面临着不少的设计挑战。在进行50W 500W的大功率的D类音频放大器的应用设计中,面临以下问题:对于许多音频设备设计者而言为一新领域,特别是在EMI和滤波设计方面;过电流保护设计比较复杂。随着D类音频放大器的技术的发展,今后音频系统有望完全替代AB类音频放大器。第2章 硬件电路设计2.1原理分析D类功放是放大元件处于开关状态时的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状体,晶体管相当于一个接通的开关,把电源与负载直接接通。理想的晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。这种损耗只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。D类放大器是将输入前置放大器对信号进行滤波和电平转移,另外还包括锯齿波振荡器、两个比较器、两个MOSFET和两个H桥。每一个比较器采样音频信号,采样周期由振荡频率决定,故振荡器频率对D类放大器的性能影响很大。比较器输出脉宽调制的方波,用于驱动H桥。H桥输出差动方波,构成低阻信号源给LC滤波器和负载。D类放大器使用多种调制器拓扑结构,而最基本的拓扑组合了脉宽调制(PWM)以及三角波(或锯齿波)振荡器。图2给出一个基于PWM 的半桥式D类放大器简化框图。它包括一个脉宽调制器,两个输出MOSFET和外部低通滤波器(LF 和CF)。如图2所示,P沟道和n沟道MOSFET用作电流导向开关,将其输出节点交替连接至VDD和地。由于输出晶体管使输出端在 或地之间切换,所以D类放大器的最终输出是一个高频方波。大多数D类放大器的开关频率(fsw)通常在250kHz15MHz之间。音频输入信号对输出方波进行脉宽调制,音频输入信号与内部振荡器产生的三角波(或锯齿波)进行比较,可得到PWM信号。这种调制方式通常被称作“自然采样”,其中三角波振荡器作为采样时钟。方波的占空比与输入信号电平成正比。没有输入信号时,输出波形的占空比为50。图3为PWM 输出波形。为了从PWM波形中提取出放大后的音频信号,将D类放大器的输出信号通过低通滤波器来恢复音频信号。图2中的LC低通滤波器作为无源积分器(假设滤波器的截止频率比输出级的开关频率至少低一个数量级),它的输出等于方波的平均值。此外,低通滤波器可防止在阻性负载上耗散高频开关能量。假定滤波后的输出电压(VO-AVG)和电流( IAVG)在单个开关周期内保持恒定,因为 fsw比音频输入信号的最高频率要高得多。因此,占空比与滤波后的输出电压之间的关系,可通过对电感电压和电流进行简单的时域分析得到。流经电感的瞬时电流为:其中,VL(t)是电感瞬时电压。 利用开关波形占空比来表示滤波后的输出电压: D是输出开关波形的占空比。2.2芯片简介CM102A:一种用于外部音频播放即插即用的高度集成的USB立体声音频扬声器控制芯片。引脚线图引脚说明:引脚号名称功能描述1PAEN功率放大器控制输入,高电平有效2GPIO 通用输入输出3XO输出12 mhz振荡器4XI输入12 mhz振荡器5DVDD5V5V电压供应6REGV调节器输出3.3V7USBDPUSB数据D+8USBDMUSB数据D-9DVSS数字地址10TEST测试模式11VREF连接外部去耦电容器12VOLADJ模拟量控制输入13AVDD模拟电路电源供应14LOL左声道15LOR右声道16AVSS模拟接地17SPDIFOS / PDIF数据输出18PDSW关闭电源开关控制信号输出第3章 电路调试3.1调试的设备为了方便调试,找出电路相关电路故障及测量相关数据,我们使用了很多专业调试设备,如表5-1所示。电脑一台电烙铁一套信号/电源线一套万用表一块喇叭两个示波器一台3.2 电路调试 1.不通电检查 检查连线电路安装焊接完毕后,不急于通电,先认真检查接线焊接是否正确,包括虚焊、假焊、短路等。虚焊与假焊都是指焊件表面没有充分镀上锡层,焊件之间没有被锡固住,是由于焊件表面没有清除干净或焊剂用得太少以及焊接时间过短所引起的接触不良。短路是焊件之间由于焊剂过多出现不应该的连接,在实验中时常发生,以为问题是由元器件造成的。 2.通电观察 用USB连线将连接好的功放板接入电脑,首先要观察有无异常现象,包括有无冒烟,是否闻到异常气味,手摸元件是否发烫,电源是否有短路现象。如果出现异常,应立即关断电源,待排除故障后方可重新通电。然后再测量各元件引脚的电压,而不是只测量各路总电源电压,以保证元器件正常工作。再接入喇叭,播放音乐聆听音质和声音。 3.3测试总结经过实验与调试,我们制作出了符合要求的USB数字功率放大电路,取得较好的播放效果。结 论音乐是一种生活享受,音乐使我们放松,动感的音响大街小巷随处可见,而正是由于高保真音响的基本组成系统 音源器材、功率放大器、音箱等对音乐的重放, 给许多的音响爱好者和家庭带来了快乐。其中功率放大器是最为重要的一部分,其电路越是简洁,电信号在传输过程中的损失就越小,电路对电信号的影响也就越小,失真也就越小,重放的音质也就越好。在此次的课程设计中,不仅加深了我对专业知识的理解,更加的拓宽了知识面,就在完成本设计那一刻我感受到了动手学习莫大的快乐。本设计详细讨论D类功放的工作原理,各类型放大器比较,优越性。对于本系统设计,有些指标还有待于进一步提高。例如:在功放效率,最大不失真功率等方面还有较大的潜力可挖,这些都有待于我们通过对电路的改进和对元器件的最佳选择进一步完善。在这次课程设计中,我走了许多弯路,特别是在硬件的焊接上出现较大问题,导致前期作品不能够通过检验,但这同时使我从中积累了许多经验教训,正是这些经验教训使我们对D类放大器的工作原理有了更深刻的认识,对集成电路的设计有了更深刻的理解,进一步巩固了自己所学的专业知识,无论理论还是实践方面都有了较大的提高。但由于时间短、动手能力不是很强以及设备和资料缺乏,所以本次的设计自己各方面还存在着很多不足的地方,要学习的东西还很多。最后终于做完了,自己有种如释重负的感觉。为此我想:实践才是检验真理的唯一标准!有些东西必须通过实践才能看出自己的不足。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了着手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。 参考文献1华成英.模拟电子技术基础.北京高等教育出版社.2001. 2张 平.关于D类音频功率放大器的应用.安阳大学学报.2002年02期.3龚 伟.D类音频放大器控制方式综述.重庆大学报.2003年02期.4方佩敏.D类音频功率放大器.电子世界.2003年08期.5CM102-A+/102S+ USB 2CH Audio Controller for Speaker. 附 录序号名称型号规格位置数量1USB母座JP1122P接线柱KM301-2P,5.08间距JP2、JP323发光二极管红色、5mmLED14晶振12MY15电阻22R1、R226电阻1MR517电阻1.5KR318电阻10KR419电阻680R6110瓷片电容22pFC3、C4211瓷片电容100pFC1、C2212电解电容10uFC7、C9213电解电容220uFC5、C6214电解电容100uFC8115集成电路CM102IC1附件一:元件清单附录二:电路原理图