欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载  

    机器人电机驱动芯片001L298N.doc

    • 资源ID:4149353       资源大小:2.34MB        全文页数:14页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    机器人电机驱动芯片001L298N.doc

    . OPERATING SUPPLY VOLTAGE UP TO 46 V.TOTAL DC CURRENT UP TO 4 ALOW SATURATION VOLTAGE.OVERTEMPERATURE PROTECTION.LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 VL298DUAL FULL-BRIDGE DRIVER(HIGH NOISE IMMUNITY)DESCRIPTIONThe L298 is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20 packages. It is ahigh voltage, high current dual full-bridge driver de-Multiw att15PowerSO20signed to accept standardTTL logic levels and driveinductive loads such as relays, solenoids, DC andstepping motors. Two enableinputs are provided toenable or disable the deviceindependentlyof the in-put signals. The emitters of the lower transistors ofeach bridge are connected together and the corre-sponding external terminal can be used for the con-BLOCK DIAGRAMJenuary 2000O RDERING NUMBERS :L298N (Mult iwatt Vert. )L298HN (Multiwatt Horiz. )L298P (PowerSO20)nectionof an externalsensing resistor. An additionalsupply input is provided so that the logic works at alower voltage.1/13L298ABSOLUTE MAXIMUM RATINGSSymb olVSPower SupplyVSSLogic Supply VoltageVI,VenInput and Enable VoltageParameterValue5070.3 to 7Uni tVVVIOPeak Output Current (each Channel) Non Repetitive (t = 100µs)Repetitive (80% on 20% off; ton = 10ms)DC Operation32.52AAAVsensSensing Voltage1 to 2.3VPtotTopTotal Power Dissipation (Tcase = 75°C)Junction Operating Temperature2525 to 130W°CTstg, TjStorage and Junction TemperaturePIN CONNECTIONS (top view)Multiwatt15TAB CONNECTED TO PIN 8GND1Sense A2N.C.3Out 14151413121110987654321D95IN240A2019181740 to 150CURRENT SENSING BOUTPUT 4OUTPUT 3INPUT 4ENABLE BINPUT 3LOGIC SUPPLY VOLTAGE VSSGNDINPUT 2ENABLE AINPUT 1SUPPLY VOLTAGE VSOUTPUT 2OUTPUT 1CURRENT SENSING AGNDSense BN.C.Out 4°CTHERMAL DATASymb olOut 25VS6Input 17Enable A8Input 29GND10ParameterPowerSO20D95IN239161514131211Out 3Input 4Enable BInput 3VSSGNDPo werSO20Mu ltiwatt15Uni tRth j-caseThermal Resistance Junction-caseRth j-ambThermal Resistance Junction-ambient(*) Mounted on aluminum substrate2/13Max.Max.13 (*)335°C/W°C/WPIN FUNCTIONS (refer to the block diagram)L298MW. 15Po werSONameFun ction1;152;19Sense A; Sense BBetween this pin and ground is connected the sense resistor tocontrol the current of the load.2;344;56Out 1; Out 2VSOutputs of the Bridge A; the current that flows through the loadconnected between these two pins is monitored at pin 1.Supply Voltage for the Power Output Stages.A non-inductive 100nF capacitor must be connected between thispin and ground.5;76;117;98;14Input 1; Input 2TTL Compatible Inputs of the Bridge A.Enable A; Enable BTTL Compatible Enable Input: the L state disables the bridge A(enable A) and/or the bridge B (enable B).891,10,11,2012GNDVSSGround.Supply Voltage for the Logic Blocks. A100nF capacitor must beconnected between this pin and ground.10; 1213;15Input 3; Input 4TTL Compatible Inputs of the Bridge B.13; 1416;173;18Out 3; Out 4N.C.Outputs of the Bridge B. The current that flows through the loadconnected between these two pins is monitored at pin 15.Not ConnectedELECTRICAL CHARACTERISTICS (VS= 42V; VSS = 5V, Tj= 25°C; unless otherwise specified)SymbolParameterTest Co ndi tionsMin .Typ .Max.Uni tVSSupply Voltage (pin 4)VSSLogic Supply Voltage (pin 9)Operative ConditionVIH +2.54.55467VVISQuiescent Supply Current (pin 4)Ven= H; IL= 0Ven = LISSQuiescent Current from VSS(pin 9) Ven= H; IL= 0Ven = LViLInput Low Voltage(pins 5, 7, 10, 12)ViHInput High Voltage(pins 5, 7, 10, 12)IiLLow Voltage Input CurrentVi = L(pins 5, 7, 10, 12)Vi= LVi = HVi= XVi= LVi = HVi= X0.32.3135024722704361261.5VSS10mAmAmAmAmAmAVVµAIiHHigh Voltage Input Current(pins 5, 7, 10, 12)Ven= LEnable Low Voltage (pins 6, 11)Ven = HEnable High Voltage (pins 6, 11)Ien = LLow Voltage Enable Current(pins 6, 11)Ien = HHigh Voltage Enable Current(pins 6, 11)Vi = H VSS 0.6VVen = LVen = H VSS0.6V0.32.330301001.5VSS10100µAVVµAµAVCEsat (H)Source Saturation VoltageVCEsat (L)Sink Saturation VoltageVCEsatTotal DropVsensSensing Voltage (pins 1, 15)IL= 1AIL= 2AIL= 1A(5)IL= 2A(5)IL= 1A(5)IL= 2A(5)0.951.3520.851.21.71.801 (1)1.72.71.62.33.24.92VVVVVVV3/13L298ELECTRICAL CHARACTERISTICS (continued)SymbolParameterTest Co ndi tionsMin .Typ .Max.Uni tT1(Vi)Source Current Turn-off DelayT2(Vi)Source Current Fall TimeT3(Vi)Source Current Turn-on DelayT4(Vi)Source Current Rise TimeT5 (Vi)Sink Current Turn-off DelayT6(Vi)Sink Current Fall TimeT7 (Vi)Sink Current Turn-on DelayT8(Vi)Sink Current Rise Time0.5 Vito 0.9 IL(2); (4)0.9 ILto 0.1 IL(2); (4)0.5 Vi to 0.1 IL(2); (4)0.1 ILto 0.9 IL(2); (4)0.5 Vi to 0.9 IL(3); (4)0.9 ILto 0.1 IL(3); (4)0.5 Vi to 0.9 IL(3); (4)0.1 ILto 0.9 IL(3); (4)1.50.220.70.70.251.60.2µsµsµsµsµsµsµsµsfc (Vi)Commutation FrequencyT1 (Ven)Source Current Turn-off DelayT2 (Ven)Source Current Fall TimeT3 (Ven)Source Current Turn-on DelayT4(Ven)Source Current Rise TimeT5 (Ven)Sink Current Turn-off DelayT6(Ven)Sink Current Fall TimeT7(Ven)Sink Current Turn-on DelayT8 (Ven)Sink Current Rise TimeIL= 2A0.5 Ven to 0.9 IL(2); (4)0.9 ILto 0.1 IL(2); (4)0.5 Ven to 0.1 IL(2); (4)0.1 ILto 0.9 IL(2); (4)0.5 Ven to 0.9 IL(3); (4)0.9 ILto 0.1 IL(3); (4)0.5 Vento 0.9 IL(3); (4)0.1 ILto 0.9 IL(3); (4)25310.30.42.20.350.250.140KHzµsµsµsµsµsµsµsµs1) 1)Sensing voltage can be 1 V for t 50 µsec; in steady state Vsens min 0.5 V.2) See fig. 2.3) See fig. 4.4) The load must be a pure resistor.Figure 1 : Typical Saturation Voltage vs. OutputCurrent.4/13Figure 2 : Switching Times Test Circuits.Note :For INPUT Switching, set EN = HFor ENABLESwitching, set IN = HFigure 3 : Source Current Delay Times vs. Input or Enable Switching.Figure 4 : Switching Times Test Circuits.Note :For INPUT Switching, set EN = HFor ENABLE Switching, set IN = LL2985/13L298Figure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching.Figure 6 : Bidirectional DC Motor Control.In pu tsFu nctio nVen = HVen = LC = H ; D = LForwardC = L ; D = HReverseC = DFast Motor StopC = X ; D = XFree RunningMotor Stop6/13L = LowH = HighX = Dont careL298Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel 4and channel 2 with channel 3.APPLICATION INFORMATION (Refer to the block diagram)1.1. POWER OUTPUT STAGEThe L298integratestwo poweroutputstages(A ; B).The power output stage is a bridge configurationand its outputs can drive an inductive load in com-mon or differenzial mode, dependingon the state ofthe inputs. The current that flows through the loadcomes out from the bridge at the sense output : anexternal resistor (RSA ; RSB.) allows to detect the in-tensity of this current.1.2. INPUT STAGEEach bridge is driven by means of four gates the in-put of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB.The In inputs set the bridge state when The En inputis high ; a lowstate of the En inputinhibitsthe bridge.All the inputs are TTL compatible.2. SUGGESTIONSA non inductive capacitor, usually of 100 nF, mustbe foreseen between both Vs and Vss, to ground,as near as possible to GND pin. When the large ca-pacitor of the power supply is too far from the IC, asecond smaller one must be foreseen near theL298.The sense resistor, not of a wire wound type, mustbe grounded near the negative pole of Vs that mustbe near the GND pin of the I.C.Each input must be connected to the source of thedriving signals by means of a very short path.Turn-On and Turn-Off : Before to Turn-ON the Sup-ply Voltageand beforeto Turnit OFF, the Enablein-put must be driven to the Low state.3. APPLICATIONSFig 6 shows a bidirectional DC motor control Sche-matic Diagram for which only one bridge is needed.The external bridge of diodes D1 to D4 is made byfour fast recovery elements (trr 200 nsec) thatmust be chosen of a VF as low as possible at theworst case of the load current.The sense outputvoltage can be used to control thecurrent amplitude by chopping the inputs, or to pro-vide overcurrent protection by switching low the en-able input.The brake function (Fast motor stop) requires thatthe Absolute Maximum Rating of 2 Amps mustnever be overcome.When the repetitive peak current needed from theload is higher than 2 Amps, a paralleled configura-tion can be chosen (See Fig.7).An external bridge of diodes are required when in-ductive loads are driven and when the inputs of theIC are chopped; Shottkydiodeswould be preferred.7/13L298This solution can drive until 3 Amps In DC operationand until 3.5 Amps of a repetitive peak current.OnFig 8 it is shownthe driving ofa twophasebipolarstepper motor ; the needed signals to drive the in-puts of the L298 are generated, in this example,from the IC L297.Fig 9 shows an example of P.C.B. designed for theapplication of Fig 8.Figure 8 : Two Phase Bipolar Stepper Motor Circuit.Fig 10 shows a second two phase bipolar steppermotor control circuit where the current is controlledby the I.C. L6506.This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.RS1 = RS2 = 0.5 VD1 to D8 = 2 A Fast diodes8/13F 1.2 V I = 2 Atrr 200 nsFigure 9 : Suggested Printed Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).L298Figure 10 : Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Controller L6506.RRand Rsense depend from the load current9/13L298DIM.mminchABCDMIN.TYP.MAX.MIN.TYP.MAX.50.1972.650.1041.60.06310.039OUTLINE ANDMECHANICAL DATAE0.49F0.660.550.0190.750.0260.0220.030G1.021.271.520.0400.0500.060G117.5317.7818.030.6900.7000.710H119.6H220.20.7720.795L21.922.222.50.8620.8740.886L121.722.122.50.8540.8700.886 L217.6518.10.6950.713L317.2517.517.750.6790.6890.699L410.310.710.90.4060.4210.429L72.652.90.1040.114M4.254.554.850.1670.1790.191M14.635.085.530.1820.2000.218S1.92.60.0750.102S11.9Dia13.6510/132.60.0753.850.1440.1020.152Multiwatt15 VDIM.mminchOUTLINE ANDL298ABCMIN.TYP.MAX.MIN.TYP.MAX.50.1972.650.1041.60.063MECHANICAL DATAE0.49F0.660.550.0190.750.0260.0220.030G1.141.271.40.0450.0500.055G117.5717.7817.910.6920.7000.705H119.6H2LL1L220.5718.032.5420.20.7720.8100.7100.1000.795L317.2517.517.750.6790.6890.699L410.310.710.90.4060.4210.429L5L6L72.65S1.9S11.9Dia13.655.282.382.90.1042.60.0752.60.0753.850.1440.2080.0940.1140.1020.1020.152Multiwatt15 H11/13L298DIM.mminchAMIN.TYP.MAX.MIN.TYP.MAX.3.60.142OUTLINE ANDMECHANICAL DATAa10.1a20.30.0043.30.0120.130a3b00.40.10.0000.530.0160.0040.021c0.23D (1)15.8D19.4E13.9ee3E1 (1)10.9E2E35.8G0H15.5hL0.8NST1.2711.43100.320.009160.6229.80.37014.50.54711.10.4292.96.20.2280.10.00015.90.6101.11.10.03110° (max.)8° (max.)0.0500.4500.3940.0130.6300.3860.5700.4370.1140.2440.0040.6260.0430.043JEDEC MO-166PowerSO20(1) ”D and F” do not include mold flash or protrusions.- Mold flash or protrusions shall not exceed 0.15 mm (0.006”).- Critical dimensions: ”E”, ”G” and ”a3”NNbeDETAIL Ae3a2ARDETAIL BEa1c20HD11a3leadDETAIL B0.35DETAIL AslugGage Plane- C -12/13E2h x 451T10E1PSO20MECS

    注意事项

    本文(机器人电机驱动芯片001L298N.doc)为本站会员(文库蛋蛋多)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开